A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A polynomial time algorithm for computing the area under a GDT curve. | LitMetric

A polynomial time algorithm for computing the area under a GDT curve.

Algorithms Mol Biol

Department of Computer Science, University of Northern Iowa, 305 ITTC, Cedar Falls, Iowa, 50613 USA.

Published: October 2015

Background: Progress in the field of protein three-dimensional structure prediction depends on the development of new and improved algorithms for measuring the quality of protein models. Perhaps the best descriptor of the quality of a protein model is the GDT function that maps each distance cutoff θ to the number of atoms in the protein model that can be fit under the distance θ from the corresponding atoms in the experimentally determined structure. It has long been known that the area under the graph of this function (GDT_A) can serve as a reliable, single numerical measure of the model quality. Unfortunately, while the well-known GDT_TS metric provides a crude approximation of GDT_A, no algorithm currently exists that is capable of computing accurate estimates of GDT_A.

Methods: We prove that GDT_A is well defined and that it can be approximated by the Riemann sums, using available methods for computing accurate (near-optimal) GDT function values.

Results: In contrast to the GDT_TS metric, GDT_A is neither insensitive to large nor oversensitive to small changes in model's coordinates. Moreover, the problem of computing GDT_A is tractable. More specifically, GDT_A can be computed in cubic asymptotic time in the size of the protein model.

Conclusions: This paper presents the first algorithm capable of computing the near-optimal estimates of the area under the GDT function for a protein model. We believe that the techniques implemented in our algorithm will pave ways for the development of more practical and reliable procedures for estimating 3D model quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620747PMC
http://dx.doi.org/10.1186/s13015-015-0058-0DOI Listing

Publication Analysis

Top Keywords

protein model
12
gdt function
12
area gdt
8
quality protein
8
model quality
8
gdt_ts metric
8
capable computing
8
computing accurate
8
protein
6
gdt_a
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!