Ferric chloride thrombosis model: unraveling the vascular effects of a highly corrosive oxidant.

Blood

Thrombosis Group, Heart Research Institute, Newtown, NSW, Australia Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia Department of Molecular and Experimental Medicine, Division of Experimental Hemostasis and Thrombosis, The Scripps Research Institute, La Jolla, CA.

Published: December 2015

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2015-09-668384DOI Listing

Publication Analysis

Top Keywords

ferric chloride
4
chloride thrombosis
4
thrombosis model
4
model unraveling
4
unraveling vascular
4
vascular effects
4
effects highly
4
highly corrosive
4
corrosive oxidant
4
ferric
1

Similar Publications

One of the most costly stages of activated sludge wastewater treatment plants is the treatment and dewatering of waste sludge. Chemical conditioning of sludge, as one of the most widespread methods to enhance sludge dewaterability, accounts for a significant portion of operational expenses due to the consumption of expensive polymeric compounds. This research aims to assess the cost-effectiveness of ochre soil, modified with hydrochloric acid, as an affordable mineral for conditioning waste sludge in an activated sludge system.

View Article and Find Full Text PDF

Conversion of rice straw into nanocellulose offers a sustainable approach to agricultural waste management, yielding an industrially important product with potential applications. This work focuses on effectively extracting pure cellulose from both widely used Basmati and Parmal rice straw (BRS and PRS) using less alkali concentrations (3-5 % NaOH). The process was optimized via Box Behnken design at 90-150 °C temperatures for 90-150 min, which resulted in 88.

View Article and Find Full Text PDF

Determination of main influence mechanism of fulvic acid on arsenic removal by ferric chloride.

J Environ Sci (China)

July 2025

John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.

In this study, synthetic wastewater containing 110 µg/L arsenate (As(V)), 0-20 mg/L fulvic acid (FA), and 0-12.3 mg/L phosphate was treated with 3 mg/L Fe. The mechanisms of FA and phosphate effects on As(V) removal by ferric chloride were determined using 0.

View Article and Find Full Text PDF

The role of pre-coagulation in wastewater nitrogen removal: Greenhouse gas emission reduction.

J Environ Manage

January 2025

School of Environmental Science and Resources, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China. Electronic address:

In order to achieve the carbon peak and carbon neutrality goals, more and more industries were carrying out carbon emission reduction. Of course, carbon emission reduction in the wastewater treatment was also crucial. This study developed a pre-coagulation process to prevent some pollutants (28-33% of total nitrogen and other pollutants such as organic matter) from entering the biochemical treatment stage, thereby reducing carbon emissions in the wastewater treatment.

View Article and Find Full Text PDF

Co-pyrolysis is an efficient approach for municipal sewage sludge (SS) treatment, facilitating the production of biochar and promoting the stabilization and removal of heavy metals, particularly when combined with chlorinated materials. This study explores the impact of pyrolysis temperatures (400 °C and 600 °C) and chlorinated additives (polyvinyl chloride (PVC) as an organic chloride source and ferric chloride (FeCl) as an inorganic chloride source) at 10% and 20% concentrations, on the yield, chemical speciation, leachability, and ecological risks of arsenic (As), chromium (Cr), and zinc (Zn) in biochar derived from SS. The results revealed that increasing the pyrolysis temperature from 400 to 600 °C significantly reduced biochar yield due to enhanced volatilization of organic components, as well as the removal of heavy metals in interaction with chlorinated materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!