A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxylipid Profile of Low-Dose Aspirin Exposure: A Pharmacometabolomics Study. | LitMetric

Oxylipid Profile of Low-Dose Aspirin Exposure: A Pharmacometabolomics Study.

J Am Heart Assoc

Duke University Medical Center, Durham, NC (A.G., R.K.D.) Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC (R.K.D.) Duke Institute for Brain Sciences, Duke University, Durham, NC (R.K.D.) Institute of Genome Science and Policy, Durham, NC (R.K.D.).

Published: October 2015

Background: While aspirin is a well-established and generally effective anti-platelet agent, considerable inter-individual variation in drug response exists, for which mechanisms are not completely understood. Metabolomics allows for extensive measurement of small molecules in biological samples, enabling detailed mapping of pathways involved in drug response.

Methods And Results: We used a mass-spectrometry-based metabolomics platform to investigate the changes in the serum oxylipid metabolome induced by an aspirin intervention (14 days, 81 mg/day) in healthy subjects (n=156). We observed a global decrease in serum oxylipids in response to aspirin (25 metabolites decreased out of 30 measured) regardless of sex. This decrease was concomitant with a significant decrease in serum linoleic acid levels (-19%, P=1.3×10(-5)), one of the main precursors for oxylipid synthesis. Interestingly, several linoleic acid-derived oxylipids were not significantly associated with arachidonic-induced ex vivo platelet aggregation, a widely accepted marker of aspirin response, but were significantly correlated with platelet reactivity in response to collagen.

Conclusions: Together, these results suggest that linoleic acid-derived oxylipids may contribute to the non-COX1 mediated variability in response to aspirin. Pharmacometabolomics allowed for more comprehensive interrogation of mechanisms of action of low dose aspirin and of variation in aspirin response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845113PMC
http://dx.doi.org/10.1161/JAHA.115.002203DOI Listing

Publication Analysis

Top Keywords

aspirin
8
decrease serum
8
response aspirin
8
linoleic acid-derived
8
acid-derived oxylipids
8
aspirin response
8
response
6
oxylipid profile
4
profile low-dose
4
low-dose aspirin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!