Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington's disease and spinocerebellar ataxia.

Hum Mol Genet

Department of Neurology, Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA and Deparment of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA

Published: April 2016

RNA-targeting approaches are emerging as viable therapeutics that offer an alternative method to modulate traditionally 'undrugable' targets. In the case of dominantly inherited neurodegenerative diseases, gene suppression strategies can target the underlying cause of these intractable disorders. Polyglutamine diseases are caused by CAG expansions in discrete genes, making them ideal candidates for gene suppression therapies. Here, we discuss the current state of gene suppression approaches for Huntington's disease and the spinocerebellar ataxias, including the use of antisense oligonucleotides, short-interfering RNAs, as well as viral vector-mediated delivery of short hairpin RNAs and artificial microRNAs. We focus on lessons learned from preclinical studies investigating gene suppression therapies for these disorders, particularly in rodent models of disease and in non-human primates. In animal models, recent advances in gene suppression technologies have not only prevented disease progression in a number of cases, but have also reversed existing disease, providing evidence that reducing the expression of disease-causing genes may be of benefit in symptomatic patients. Both allele- and non-allele-specific approaches to gene suppression have made great strides over the past decade, showing efficacy and safety in both small and large animal models. Advances in delivery techniques allow for broad and durable suppression of target genes, have been validated in non-human primates and in some cases, are currently being evaluated in human patients. Finally, we discuss the challenges of developing and delivering gene suppression constructs into the CNS and recent advances of potential therapeutics into the clinic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802374PMC
http://dx.doi.org/10.1093/hmg/ddv442DOI Listing

Publication Analysis

Top Keywords

gene suppression
32
gene
8
suppression strategies
8
dominantly inherited
8
inherited neurodegenerative
8
neurodegenerative diseases
8
huntington's disease
8
disease spinocerebellar
8
suppression
8
suppression therapies
8

Similar Publications

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Malaria remains a significant public health challenge, particularly in low- and middle-income countries, despite ongoing efforts to eradicate the disease. Recent advancements, including the rollout of malaria vaccines, such as RTS,S/AS01 and R21/Matrix-M™, offer new avenues for prevention. However, the rise of resistance to anti-malarial medications necessitates innovative strategies.

View Article and Find Full Text PDF

Metabolic requirements of dividing hepatocytes are prerequisite for liver regeneration after injury. In contrast to transcriptional dynamics during liver repair, its metabolic dependencies remain poorly defined. Here, we screened metabolic genes differentially regulated during liver regeneration, and report that SLC13A2, a transporter for TCA cycle intermediates, is decreased in rapid response to partial hepatectomy in mice and recovered along restoration of liver mass and function.

View Article and Find Full Text PDF

Acetylation-enhanced Sp1 transcriptional activity suppresses Mlph expression.

Sci Rep

January 2025

Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea.

Melanosome transport is regulated by major proteins, including Rab27a, Melanophilin (Mlph), and Myosin Va (Myo-Va), that form a tripartite complex. Mutation of these proteins causes melanosome aggregation around the nucleus. Among these proteins, Mlph is a linker between Rab27a and Myo-Va.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a global health concern, ranking as the fourth leading cause of cancer-related deaths worldwide. However, the role of piwi-interacting RNAs (piRNAs) in HCC processes has not been extensively explored. Through small RNA sequencing, our study identified a specific piRNA, pir-hsa-216911, which is highly expressed in HCC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!