The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene-environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene-environment interactions in children treated with r-hGH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223086 | PMC |
http://dx.doi.org/10.1038/tpj.2015.67 | DOI Listing |
Ther Adv Med Oncol
January 2025
Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells.
View Article and Find Full Text PDFPeerJ
January 2025
College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University of North Queensland, Cairns, Queensland, Australia.
Ozone (O), a major air pollutant, can negatively impact plant growth and yield. While O impacts have been widely documented in crops such as wheat and soybean, few studies have looked at the effects of O on sorghum, a C plant and the fifth most important cereal crop worldwide. We exposed grain sorghum ( cv.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
Background: Periodontitis is not always satisfactorily treated with conventional scaling and root planing, and adjunctive use of antibiotics is required in clinical practice. Therefore, it is important for clinicians to understand the diversity and the antibiotic resistance of subgingival microbiota when exposed to different antibiotics.
Materials And Methods: In this study, subgingival plaques were collected from 10 periodontitis patients and 11 periodontally healthy volunteers, and their microbiota response to selective pressure of four antibiotics (amoxicillin, metronidazole, clindamycin, and tetracycline) were evaluated through 16S rRNA gene amplicon and metagenomic sequencing analysis.
Front Cell Dev Biol
January 2025
Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
Liver cancer is a leading cause of cancer-related deaths worldwide, highlighting the need for innovative approaches to understand its complex biology and develop effective treatments. While traditional animal models have played a vital role in liver cancer research, ethical concerns and the demand for more human-relevant systems have driven the development of advanced models. Spheroids and organoids have emerged as powerful tools due to their ability to replicate tumor microenvironment and facilitate preclinical drug development.
View Article and Find Full Text PDFRegen Biomater
December 2024
Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!