VU0477573: Partial Negative Allosteric Modulator of the Subtype 5 Metabotropic Glutamate Receptor with In Vivo Efficacy.

J Pharmacol Exp Ther

Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.).

Published: January 2016

Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have potential applications in the treatment of fragile X syndrome, levodopa-induced dyskinesia in Parkinson disease, Alzheimer disease, addiction, and anxiety; however, clinical and preclinical studies raise concerns that complete blockade of mGlu5 and inverse agonist activity of current mGlu5 NAMs contribute to adverse effects that limit the therapeutic use of these compounds. We report the discovery and characterization of a novel mGlu5 NAM, N,N-diethyl-5-((3-fluorophenyl)ethynyl)picolinamide (VU0477573) that binds to the same allosteric site as the prototypical mGlu5 NAM MPEP but displays weak negative cooperativity. Because of this weak cooperativity, VU0477573 acts as a "partial NAM" so that full occupancy of the MPEP site does not completely inhibit maximal effects of mGlu5 agonists on intracellular calcium mobilization, inositol phosphate (IP) accumulation, or inhibition of synaptic transmission at the hippocampal Schaffer collateral-CA1 synapse. Unlike previous mGlu5 NAMs, VU0477573 displays no inverse agonist activity assessed using measures of effects on basal [(3)H]inositol phosphate (IP) accumulation. VU0477573 acts as a full NAM when measuring effects on mGlu5-mediated extracellular signal-related kinases 1/2 phosphorylation, which may indicate functional bias. VU0477573 exhibits an excellent pharmacokinetic profile and good brain penetration in rodents and provides dose-dependent full mGlu5 occupancy in the central nervous system (CNS) with systemic administration. Interestingly, VU0477573 shows robust efficacy, comparable to the mGlu5 NAM MTEP, in models of anxiolytic activity at doses that provide full CNS occupancy of mGlu5 and demonstrate an excellent CNS occupancy-efficacy relationship. VU0477573 provides an exciting new tool to investigate the efficacy of partial NAMs in animal models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702078PMC
http://dx.doi.org/10.1124/jpet.115.226597DOI Listing

Publication Analysis

Top Keywords

mglu5 nam
12
mglu5
10
vu0477573
8
negative allosteric
8
metabotropic glutamate
8
glutamate receptor
8
inverse agonist
8
agonist activity
8
mglu5 nams
8
vu0477573 acts
8

Similar Publications

This Letter details our efforts to develop novel, non-acetylene-containing metabotropic glutamate receptor subtype 5 (mGlu) negative allosteric modulators (NAMs) with improved pharmacological properties. This endeavor involved replacing the ether-linked pyrimidine moiety, a metabolic liability, with various 5-membered heterocycles. From this exercise, we identified , a highly brain penetrant and selective mGlu NAM which displayed moderate potency against both human and rat mGlu.

View Article and Find Full Text PDF

AE90015 is a highly specific and effective negative allosteric modulator (NAM) for the human mGlu5 receptor, showing significant promise for treating Parkinson's disease. An in vivo rat oral dose study was conducted on AE90015, which involved the collection of urine and bile samples over a 24 h period. At the study's endpoint, plasma, liver, brain, and renal tissues were also collected.

View Article and Find Full Text PDF

Rationale: Due to the numerous limitations of ketamine as a rapid-acting antidepressant drug (RAAD), research is still being conducted to find an effective and safe alternative to this drug. Recent studies indicate that the partial mGlu receptor negative allosteric modulator (NAM), 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine (M-5MPEP), has therapeutic potential as an antidepressant.

Objectives: The study aimed to investigate the potential rapid antidepressant-like effect of M-5MPEP in a mouse model of depression and to determine the mechanism of this action.

View Article and Find Full Text PDF

We used light-sensitive drugs to identify the brain region-specific role of mGlu5 metabotropic glutamate receptors in the control of pain. Optical activation of systemic JF-NP-26, a caged, normally inactive, negative allosteric modulator (NAM) of mGlu5 receptors, in cingulate, prelimbic, and infralimbic cortices and thalamus inhibited neuropathic pain hypersensitivity. Systemic treatment of alloswitch-1, an intrinsically active mGlu5 receptor NAM, caused analgesia, and the effect was reversed by light-induced drug inactivation in the prelimbic and infralimbic cortices, and thalamus.

View Article and Find Full Text PDF

Background: Partial negative allosteric modulators (NAM) of the metabotropic glutamate 5 (mGlu) receptor are an excellent alternative to full antagonists and NAMs because they retain therapeutic effects and have a much broader therapeutic window. Here, we investigated whether partial mGlu NAM, 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine (M-5MPEP), induced a fast and sustained antidepressant-like effect, characteristic of rapid-acting antidepressant drugs (RAADs) like ketamine, in mice.

Methods: A tail suspension test (TST) was used to investigate acute antidepressant-like effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!