Despite convergent evidence indicating a variety of regional abnormalities of hemispheric asymmetry in schizophrenia, patterns of wider neural network asymmetry remain to be determined. In this study, we investigated alterations in hemispheric white matter topology in schizophrenia and their association with clinical manifestations of the illness. Weighted hemispheric brain anatomical networks were constructed for each of 116 right-handed patients with schizophrenia and 66 matched healthy participants. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that although small-world properties were preserved in the hemispheric network, a significant hemispheric-independent deficit of global integration was found in schizophrenia. Furthermore, a significant group-by-hemisphere interaction was revealed in the characteristic path length and global efficiency, attributing to significantly reduced hemispheric asymmetry of global integration in patients compared with healthy controls. Specifically, we found reduced asymmetric nodal efficiency in several frontal regions and the hippocampus. Finally, the abnormal hemispheric asymmetry of brain anatomical network topology was associated with clinical features (duration of illness and psychotic psychopathology) in patients. Our findings provide new insights into lateralized nature of hemispheric dysconnectivity and highlight the potential for using brain network measures of hemispheric asymmetry as neural biomarkers for schizophrenia and its clinical features.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhv255DOI Listing

Publication Analysis

Top Keywords

hemispheric asymmetry
20
brain anatomical
12
hemispheric
9
reduced hemispheric
8
asymmetry brain
8
anatomical networks
8
global integration
8
clinical features
8
asymmetry
6
schizophrenia
6

Similar Publications

Article Synopsis
  • This study aimed to analyze brain iron changes in patients with acute ischemic stroke (AIS) using quantitative susceptibility mapping (QSM) to assist with early diagnosis and treatment.
  • A total of 34 AIS patients and 30 healthy controls underwent QSM and conventional MRI, revealing significant increases in susceptibility values in specific brain regions (bilateral caudate nucleus and putamen) in AIS patients compared to controls.
  • The study found that the highest diagnostic accuracy for distinguishing AIS from healthy individuals was 72.2%, while factors like smoking showed a notable correlation with increased susceptibility values, although overall clinical scores didn't significantly correlate with iron changes.
View Article and Find Full Text PDF

Early life stress shifts critical periods and causes precocious visual cortex development.

PLoS One

December 2024

Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.

The developing nervous system displays remarkable plasticity in response to sensory stimulation during critical periods of development. Critical periods may also increase the brain's vulnerability to adverse experiences. Here we show that early-life stress (ELS) in mice shifts the timing of critical periods in the visual cortex.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) has the potential to modulate spatial attention by enhancing the activity in one hemisphere relative to the other. This study aims to inform neurorehabilitation strategies for spatial attention disorders by investigating the impact of tDCS on the performance of healthy participants. Unlike prior research that focused on visual detection, we extended the investigation to visual search and visual imagery using computerized neuropsychological tests.

View Article and Find Full Text PDF

D1 Receptor Functional Asymmetry at Striatonigral Neurons: A Neurochemical and Behavioral Study in Male Wistar Rats.

J Neurosci Res

January 2025

Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.

Lateralization of motor behavior, a common phenomenon in humans and several species, is modulated by the basal ganglia, a site pointed out for the interhemispheric differences related to lateralization. Our study aims to shed light on the potential role of the striatonigral D1 receptor in functional asymmetry in normal conditions through neurochemical and behavioral means. We found that D1 receptor activation and D1/D3 receptor coactivation in striatonigral neurons leads to more cAMP production by adenylyl cyclase in the striatum and GABA release in their terminals in the right hemisphere compared to the left.

View Article and Find Full Text PDF

Introduction The degree to which each human brain hemisphere governs specific cognitive processes, such as language and handedness (the preference or dominance of one hand over the other), varies across individuals. Research has explored the nature of language laterality in left-handed (LH) individuals, indicating that left-hemisphere dominance for language is commonly observed across both left- and right-handed populations. Advanced imaging techniques, including functional transcranial Doppler sonography and fMRI, have revealed subtle differences in language lateralization between LH and right-handed (RH) individuals, particularly in semantic processing tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!