Epigenetic silencing including histone modifications and DNA methylation is an important tumorigenic mechanism. However, its role in cancer immunopathology and immunotherapy is poorly understood. Using human ovarian cancers as our model, here we show that enhancer of zeste homologue 2 (EZH2)-mediated histone H3 lysine 27 trimethylation (H3K27me3) and DNA methyltransferase 1 (DNMT1)-mediated DNA methylation repress the tumour production of T helper 1 (TH1)-type chemokines CXCL9 and CXCL10, and subsequently determine effector T-cell trafficking to the tumour microenvironment. Treatment with epigenetic modulators removes the repression and increases effector T-cell tumour infiltration, slows down tumour progression, and improves the therapeutic efficacy of programmed death-ligand 1 (PD-L1; also known as B7-H1) checkpoint blockade and adoptive T-cell transfusion in tumour-bearing mice. Moreover, tumour EZH2 and DNMT1 are negatively associated with tumour-infiltrating CD8(+) T cells and patient outcome. Thus, epigenetic silencing of TH1-type chemokines is a novel immune-evasion mechanism of tumours. Selective epigenetic reprogramming alters the T-cell landscape in cancer and may enhance the clinical efficacy of cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779053PMC
http://dx.doi.org/10.1038/nature15520DOI Listing

Publication Analysis

Top Keywords

epigenetic silencing
12
th1-type chemokines
12
silencing th1-type
8
dna methylation
8
effector t-cell
8
tumour
6
epigenetic
5
chemokines shapes
4
shapes tumour
4
tumour immunity
4

Similar Publications

Triple-negative breast cancer (TNBC) is recognized as the most aggressive subtype of breast cancer. Epigenetic silencing, such as DNA methylation mediated by DNA methyltransferases (DNMTs) plays key roles in TNBC tumorigenesis. Hypomethylating agents (HMAs) such as azacitidine, decitabine, and guadecitabine are key inhibitors of DNMTs, and accumulating evidence has shown their immunogenicity properties.

View Article and Find Full Text PDF

Aging-dependent temporal regulation of MIR156 epigenetic silencing by CiLDL1 and CiNF-YB8 in chrysanthemum.

New Phytol

January 2025

Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.

Temporal decline in microRNA miR156 expression is crucial for the transition to, and maintenance of, the adult phase and flowering competence in flowering plants. However, the molecular mechanisms underlying the temporal regulation of miR156 reduction remain largely unknown. Here, we investigated the epigenetic mechanism regulating the temporal silencing of cin-MIR156 in wild chrysanthemum (Chrysanthemum indicum), focusing on the role of the lysine-specific demethylase CiLDL1 and the nuclear factor Y complex.

View Article and Find Full Text PDF

Herpesviruses mimic zygotic genome activation to promote viral replication.

Nat Commun

January 2025

Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg, Freiburg, Germany.

Zygotic genome activation (ZGA) is crucial for maternal to zygotic transition at the 2-8-cell stage in order to overcome silencing of genes and enable transcription from the zygotic genome. In humans, ZGA is induced by DUX4, a pioneer factor that drives expression of downstream germline-specific genes and retroelements. Here we show that herpesviruses from all subfamilies, papillomaviruses and Merkel cell polyomavirus actively induce DUX4 expression to promote viral transcription and replication.

View Article and Find Full Text PDF

Catalytic-independent functions of the Integrator-PP2A complex (INTAC) confer sensitivity to BET inhibition.

Nat Chem Biol

January 2025

Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.

Chromatin and transcription regulators are critical to defining cell identity through shaping epigenetic and transcriptional landscapes, with their misregulation being closely linked to oncogenesis. Pharmacologically targeting these regulators, particularly the transcription-activating BET proteins, has emerged as a promising approach in cancer therapy, yet intrinsic or acquired resistance frequently occurs, with poorly understood mechanisms. Here, using genome-wide CRISPR screens, we find that BET inhibitor efficacy in mediating transcriptional silencing and growth inhibition depends on the auxiliary/arm/tail module of the Integrator-PP2A complex (INTAC), a global regulator of RNA polymerase II pause-release dynamics.

View Article and Find Full Text PDF

LINC00323 knockdown suppresses the proliferation, migration, and vascular mimicry of non-small cell lung cancer cells by promoting ubiquitinated degradation of AKAP1.

Noncoding RNA Res

April 2025

Department of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.

Background: LINC00323, a new long noncoding RNA, is aberrantly expressed in several cancers. However, the expression, function, and mechanism of LINC00323 in non-small cell lung cancer (NSCLC) are unclear.

Methods: In the present study, LINC00323, VEGFA, microvessel density (MVD), and AKAP1 levels were confirmed in NSCLC tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!