Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With an ultrafast time-resolved photoluminescence system utilizing a Kerr gate, the time-resolved photoluminescence of core and shell constituents within CdSe/CdS dot-in-rod heterostructures is studied as a function of heterostructure size. Measurements performed at low excitation fluence generating, on average, less than one exciton per nanorod, reveal photoluminescence from direct recombination of carriers in the CdS heterostructure rod with lifetime generally increasing from 0.4 ps to 1.3 ps as the rod length increases. Decay of the CdS rod photoluminescence is accompanied by an increase in emission from the CdSe core on comparable time scales, also trending towards larger values as the rod length increases. The observed kinetics can be explained without invoking a non-radiative trapping mechanism. We also present alloying as a mechanism for enhancing electron confinement and reducing fluorescence lifetime at nanosecond time scales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201500747 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!