In this study, we sought to determine whether differences in cellular properties associated with energy homeostasis could explain the higher incidence of work-related myalgia in trapezius (TRAP) compared with extensor carpi radialis brevis (ECRB). Tissue samples were obtained from the ECRB (n = 19) and TRAP (n = 17) of healthy males and females (age 27.9 ± 2.2 and 28.1 ± 1.5 years, respectively; mean ± SE) and analyzed for properties involved in both ATP supply and utilization. The concentration of ATP and the maximal activities of creatine phosphokinase, phosphorylase, and phosphofructokinase were higher (P < 0.05) in ECRB than TRAP. Succinic dehydrogenase, citrate synthase, and cytochrome c oxidase were not different between muscles. The ECRB also displayed a higher concentration of Na(+)-K(+)-ATPase and greater sarcoplasmic reticulum Ca(2+) release and uptake. No differences existed between muscles for either monocarboxylate transporters or glucose transporters. It is concluded that the potentials for high-energy phosphate transfer, glycogenolysis, glycolysis, and excitation-contraction coupling are higher in ECRB than TRAP. Histochemical measurements indicated that the muscle differences are, in part, related to differing amounts of type II tissue. Depending on the task demands, the TRAP may experience a greater metabolic and excitation-contraction coupling strain than the ECRB given the differences observed.

Download full-text PDF

Source
http://dx.doi.org/10.1139/cjpp-2014-0549DOI Listing

Publication Analysis

Top Keywords

ecrb trap
12
cellular properties
8
extensor carpi
8
carpi radialis
8
radialis brevis
8
healthy males
8
males females
8
excitation-contraction coupling
8
ecrb
6
trap
5

Similar Publications

In this study, we sought to determine whether differences in cellular properties associated with energy homeostasis could explain the higher incidence of work-related myalgia in trapezius (TRAP) compared with extensor carpi radialis brevis (ECRB). Tissue samples were obtained from the ECRB (n = 19) and TRAP (n = 17) of healthy males and females (age 27.9 ± 2.

View Article and Find Full Text PDF

This study compared both the extensor carpi radialis brevis (ECRB) and the trapezius (TRAP) muscles of women with work-related myalgia (WRM) with healthy controls (CON) to determine whether abnormalities existed in cellular energy status and the potentials of the various metabolic pathways and segments involved in energy production and substrate transport. For both the ECRB (CON, n = 6-9; WRM, n = 13) and the TRAP (CON, n = 6-7; WRM, n = 10), no differences (P > 0.05) were found for the concentrations (in millimoles per kilogram of dry mass) of ATP, PCr, lactate, and glycogen.

View Article and Find Full Text PDF

We investigated the potential role of selected excitation-contraction coupling processes in females with work-related myalgia (WRM) by comparing WRM with healthy controls (CON) using tissue from extensor carpi radialis brevis (ECRB) and trapezius (TRAP) muscles. For the ECRB, age (mean ± SE) was 29.6 ± 3.

View Article and Find Full Text PDF

To investigate fibre-type abnormalities in women with work-related myalgia (WRM), tissue samples were extracted from their trapezius (TRAP) and the extensor carpi radialis brevis (ECRB) muscles and compared with healthy controls (CON). For the ECRB samples (CON, n = 6; WRM, n = 11), no differences (P > 0.05) were found between groups for any of the properties examined, namely fibre-type (I, IIA, IIX, IIAX) distribution, cross-sectional fibre area, capillary counts (CC), capillary to fibre area ratio, and succinic dehydrogenase activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!