A novel Lewis acid catalyzed tandem cyclization reaction of internal alkynols and vinyl azides has been achieved to afford a series of products containing a pyran-based indeno[1,2-c]isochromene scaffold in moderate to high yields. This tandem polycyclization protocol provides a straightforward entry to construct the complex polycyclic skeleton through cycloisomerization, formal [4 + 2] cycloaddition, and an elimination process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.5b02556 | DOI Listing |
Biol Psychiatry
January 2025
Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh; Center for the Neural Basis of Cognition, Carnegie Mellon University. Electronic address:
Background: Certain cognitive processes require inhibition provided by the somatostatin (SST) class of gamma-aminobutyric acid (GABA) neurons in the dorsolateral prefrontal cortex (DLPFC). This inhibition onto pyramidal neuron dendrites depends on both SST and GABA signaling. Although SST mRNA levels are lower in the DLPFC in schizophrenia, it is not known if SST neurons exhibit alterations in the capacity to synthesize GABA, principally via the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China. Electronic address:
n-Alkyltrimethylammonium bromide (CTAB)-based deep eutectic solvent (DESs) has potential in the efficient delignification and utilization of carbohydrates in biomass. In this research, DESs containing Brønsted acid and Lewis acid were prepared with CTAB (alkyl-chain length 12-18), organic acids and metal chlorides, and the optimal treatment conditions were acquired by pretreatment optimization. Through the pretreatment with TTAB/LCA/Fe (1:4:0.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, Aarhus 8000, Denmark. Electronic address:
Rare earth elements (REEs) are the "fuel" for high-tech industry, yet their selective recovery from complex waste matrices is challenging. Herein, we designed a 2D multilayered MXene TiCT adsorbent for selective extraction of REEs in a broad pH range. By establishing strong Lewis acid-base interactions, extraction capacities of TiCT to Eu(III) and Ho(III) reached 892.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
Poly(ethylene oxide) (PEO) has been widely studied as an electrolyte owing to its excellent lithium compatibility and good film-forming properties. However, its electrochemical performance at room temperature remains a significant challenge due to its low ionic conductivity, narrow electrochemical window, and continuous decomposition. Herein, we prepare a multifunctional polar polymer to optimize PEO's electrochemical properties and cycling stability.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
Polyethers are versatile materials extensively used in advanced as well as everyday applications. The incorporation of primary amine functionality into polyethers is particularly attractive due to its well-established coupling chemistries. However, the inherent nucleophilicity of amine group poses a challenge in the anionic ring-opening polymerization (ROP) of epoxides and requires the use of robust protecting groups that can withstand the harsh conditions of ROP without triggering undesirable side reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!