There is increasing evidence that the regional spatial variations in the biological and mechanical properties of articular cartilage are an important consideration in the pathogenesis of knee osteoarthritis (OA) following kinematic changes at the knee due to joint destabilizing events (such as an anterior cruciate ligament (ACL) injury). Thus, given the sensitivity of chondrocytes to the mechanical environment, understanding the internal mechanical strains in knee articular cartilage under macroscopic loads is an important element in understanding knee OA. The purpose of this study was to test the hypothesis that cartilage from the central and peripheral regions of the tibial plateau has different internal strain distributions under the same applied load. The internal matrix strain distribution for each specimen was measured on osteochondral blocks from the tibial plateau of mature ovine stifle joints. Each specimen was loaded cyclically for 20 min, after which the specimen was cryofixed in its deformed position and freeze fractured. The internal matrix was viewed in a scanning electron microscope (SEM) and internal strains were measured by quantifying the deformation of the collagen fiber network. The peak surface tensile strain, maximum principal strain, and maximum shear strain were compared between the regions. The results demonstrated significantly different internal mechanical strain distributions between the central and peripheral regions of tibial plateau articular cartilage under both the same applied load and same applied nominal strain. These differences in the above strain measures were due to differences in the deformation patterns of the collagen network between the central and peripheral regions. Taken together with previous studies demonstrating differences in the biochemical response of chondrocytes from the central and peripheral regions of the tibial plateau to mechanical load, the differences in collagen network deformation observed in this study help to provide a fundamental basis for understanding the association between altered knee joint kinematics and premature knee OA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844095PMC
http://dx.doi.org/10.1115/1.4031849DOI Listing

Publication Analysis

Top Keywords

central peripheral
20
tibial plateau
20
peripheral regions
16
strain distributions
12
articular cartilage
12
regions tibial
12
knee joint
8
internal mechanical
8
strain
8
applied load
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!