Background And Purpose: Application of ionizing radiation for the purpose of medical research in Germany needs to be approved by the national authority for radiation protection (Bundesamt für Strahlenschutz, BfS). For studies in the field of radiation oncology, differentiation between use of radiation for "medical care (Heilkunde)" versus "medical research" frequently leads to contradictions. The aim of this article is to provide principle investigators, individuals, and institutions involved in the process, as well as institutional review or ethics committees, with the necessary information for this assessment. Information on the legal frame and the approval procedures are also provided.

Methods: A workshop was co-organized by the German Society for Radiation Oncology (DEGRO), the Working Party for Radiation Oncology (ARO) of the German Cancer Society (DKG), the German Society for Medical Physics (DGMP), and the German Cancer Consortium (DKTK) in October 2013. This paper summarizes the results of the workshop and the follow-up discussions between the organizers and the BfS.

Results: Differentiating between "Heilkunde" which does not need to be approved by the BfS and "medical research" is whether the specific application of radiation (beam quality, dose, schedule, target volume, etc.) is a clinically established and recognized procedure. This must be answered by the qualified physician(s) ("fachkundiger Arzt" according to German radiation protection law) in charge of the study and the treatments of the patients within the study, taking into consideration of the best available evidence from clinical studies, guidelines and consensus papers. Among the important parameters for assessment are indication, total dose, and fractionation. Radiation treatments applied outside clinical trials do not require approval by the BfS, even if they are applied within a randomized or nonrandomized clinical trial. The decision-making by the "fachkundigem Arzt" may be supported on request by an opinion given by the DEGRO Expert Committee for clinical trials.

Conclusion: An important aim for promoting clinical research and patient care in radiation oncology is to further professionalize planning and implementation of clinical trials in this field. Correct assessment, at an early stage, whether a trial needs to be approved by the BfS may reduce unnecessary costs and reduce the time needed for the approval procedure for those trials which need to be assessed by the BfS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00066-015-0914-3DOI Listing

Publication Analysis

Top Keywords

radiation oncology
16
clinical trials
12
radiation
11
trials field
8
field radiation
8
radiation protection
8
"medical research"
8
german society
8
german cancer
8
approved bfs
8

Similar Publications

Reevaluating Anti-Inflammatory Therapy: Targeting Senescence to Balance Anti-Cancer Efficacy and Vascular Disease.

Arterioscler Thromb Vasc Biol

January 2025

Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston. (B.C.-C., N.A.V.G., N.L.P., L.P.E., V.S.K.S., A.M.O., J.L., G.M., O.H., A.D., S.W.Y., C.A.I., K.C.O.M., S. Kotla, J.-i.A.).

Modulating immune function is a critical strategy in cancer and atherosclerosis treatments. For cancer, boosting or maintaining the immune system is crucial to prevent tumor growth. However, in vascular disease, mitigating immune responses can decrease inflammation and slow atherosclerosis progression.

View Article and Find Full Text PDF

Background And Purpose: Radiation-induced lymphopenia (RIL) may be associated with a worse prognosis in pancreatic cancer. This study aimed to develop a normal tissue complication probability (NTCP) model to predict severe RIL in patients with pancreatic cancer undergoing concurrent chemoradiotherapy (CCRT).

Materials And Methods: We reviewed pancreatic cancer patients treated at our facility for model training and internal validation.

View Article and Find Full Text PDF

Background: Robotic assistance has become increasingly prevalent in spinal surgery in recent years, emerging as a tool to increase accuracy and precision and lower complication rates and radiation exposure. The 7 and 8 Annual Seattle Science Foundation (SSF) Robotics Courses showcased presentations and demonstrations from some of the field's most experiences leaders on latest topics in robotics and spinal surgery, including cutting-edge preoperative planning technologies, augmented reality (AR) in the operating room, cervical fusion with transpedicular screws, and neuro-oncologic management. We provide a scoping review of the use of robotics technology in spinal surgery featuring highlights from the 7 and 8 Annual SSF Robotics Courses.

View Article and Find Full Text PDF

Recent advances in molecular science have significantly enlightened our mechanistic understanding of spinocerebellar ataxia type 7. To further close remaining gaps, we performed a multi-omics analysis using SCA7 mice. Entire brain tissue samples were collected from 12-week-old mice, and RNA sequencing, methylation analysis, and proteomic analysis were performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!