The histone chaperone DAXX maintains the structural organization of heterochromatin domains.

Epigenetics Chromatin

Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada ; Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8 Canada.

Published: October 2015

Background: The death domain-associated protein (DAXX) collaborates with accessory proteins to deposit the histone variant H3.3 into mouse telomeric and pericentromeric repeat DNA. Pericentromeric repeats are the main genetic contributor to spatially discrete, compact, constitutive heterochromatic structures called chromocentres. Chromocentres are enriched in the H3K9me3 histone modification and serve as integral, functionally important components of nuclear organization. To date, the role of DAXX as an H3.3-specific histone chaperone has been investigated primarily using biochemical approaches which provide genome-wide views on cell populations and information on changes in local chromatin structures. However, the global chromatin and subnuclear reorganization events that coincide with these changes remain to be investigated.

Results: Using electron spectroscopic imagine (ESI), a specialized form of energy-filtered transmission electron microscopy that allows us to visualize chromatin domains in situ with high contrast and spatial resolution, we show that in the absence of DAXX, H3K9me3-enriched domains are structurally altered and become uncoupled from major satellite DNA. In addition, the structural integrity of nucleoli and the organization of ribosomal DNA (rDNA) are disrupted. Moreover, the absence of DAXX leads to chromatin that is more sensitive, on a global level, to micrococcal nuclease digestion.

Conclusions: We identify a novel role of DAXX as a major regulator of subnuclear organization through the maintenance of the global heterochromatin structural landscape. As well, we show, for the first time, that the loss of a histone chaperone can have severe consequences for global nuclear organization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617904PMC
http://dx.doi.org/10.1186/s13072-015-0036-2DOI Listing

Publication Analysis

Top Keywords

histone chaperone
12
nuclear organization
8
role daxx
8
absence daxx
8
daxx
6
histone
5
organization
5
chaperone daxx
4
daxx maintains
4
maintains structural
4

Similar Publications

The "Ins and Outs and What-Abouts" of H2A.Z: A Tribute to C. David Allis.

J Biol Chem

January 2025

Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58-62, 35390 Giessen, Germany. Electronic address:

In 2023, the brilliant chromatin biologist C. David Allis passed away leaving a large void in the scientific community and broken hearts in his family and friends. With this review, we want to tribute Dave's enduring inspiration by focusing on the histone variant H2A.

View Article and Find Full Text PDF

Objective: This study investigated metformin as a sensitizer for radiotherapy in oral squamous cell carcinoma (OSCC) to reduce the radiation intensity. It evaluated the drug's effect on Chromatin Assembly Factor-1 (CAF-1) expression, whose high levels correlate with worse prognosis of this cancer.

Methods: The effects of metformin, alone and with radiotherapy, were evaluated on CAL27 (HPV-) and SCC154 (HPV+) OSCC cells.

View Article and Find Full Text PDF

Regulation of the Hedgehog pathway activity may be supported by coactivators and corepresors of its main effectors- Gli transcription factors. While activation processes are well studied, repression mechanisms remain elusive. We identified chromatin remodelling complex Hira to interact with Gli3R protein, showed that its loss-of-function changes Hh pathway activity, and examined possible mechanism behind the observed effect.

View Article and Find Full Text PDF

Mechanisms of Inheritance of Chromatin States: From Yeast to Human.

Annu Rev Biophys

December 2024

Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA; email:

In this article I review mechanisms that underpin epigenetic inheritance of CpG methylation and histone H3 lysine 9 methylation (H3K9me) in chromatin in fungi and mammals. CpG methylation can be faithfully inherited epigenetically at some sites for a lifetime in vertebrates and, remarkably, can be propagated for millions of years in some fungal lineages. Transmission of methylation patterns requires maintenance-type DNA methyltransferases (DNMTs) that recognize hemimethylated CpG DNA produced by replication.

View Article and Find Full Text PDF

LncRNAs chaperoning dynamic protein condensates in cancer cells.

Mol Cell

December 2024

Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

In this issue of Molecular Cell, Sun et al. reveal that the long non-coding RNA (lncRNA) DNAJC3-AS1 plays a dual role in maintaining the rRNA processing function of fibrillarin (FBL) in cancer cells. It promotes FBL condensation while preventing abnormal aggregation, offering new therapeutic insights for cancer treatment by targeting lncRNAs involved in the regulation of FBL condensation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!