Conventional neuroanatomical, immunohistochemical techniques, and electrophysiological recording, as well as in vitro labeling methods may fail to detect long range extra-neurohypophyseal-projecting axons from vasopressin (AVP)-containing magnocellular neurons (magnocells) in the hypothalamic paraventricular nucleus (PVN). Here, we used in vivo extracellular recording, juxtacellular labeling, post-hoc anatomo-immunohistochemical analysis and camera lucida reconstruction to address this question. We demonstrate that all well-labeled AVP immunopositive neurons inside the PVN possess main axons joining the tract of Greving and multi-axon-like processes, as well as axonal collaterals branching very near to the somata, which project to extra-neurohypophyseal regions. The detected regions in this study include the medial and lateral preoptical area, suprachiasmatic nucleus (SCN), lateral habenula (LHb), medial and central amygdala and the conducting systems, such as stria medullaris, the fornix and the internal capsule. Expression of vesicular glutamate transporter 2 was observed in axon-collaterals. These results, in congruency with several previous reports in the literature, provided unequivocal evidence that AVP magnocells have an uncommon feature of possessing multiple axon-like processes emanating from somata or proximal dendrites. Furthermore, the long-range non-neurohypophyseal projections are more common than an "occasional" phenomenon as previously thought.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593857 | PMC |
http://dx.doi.org/10.3389/fnana.2015.00130 | DOI Listing |
Curr Res Neurobiol
June 2025
Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia.
Lesions of the primary visual cortex (V1) cause retrograde neuronal degeneration, volume loss and neurochemical changes in the lateral geniculate nucleus (LGN). Here we characterised the timeline of these processes in adult marmoset monkeys, after various recovery times following unilateral V1 lesions. Observations in NeuN-stained sections obtained from animals with short recovery times (2, 3 or 14 days) showed that the volume and neuronal density in the LGN ipsilateral to the lesions were similar to those in the contralateral hemispheres.
View Article and Find Full Text PDFbioRxiv
December 2024
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
Vasopressin (AVP), a nonapeptide synthesized predominantly by magnocellular hypothalamic neurons, is conveyed to the posterior pituitary the pituitary stalk, where AVP is secreted into the circulation. Known to regulate blood pressure and water homeostasis, it also modulates diverse social behaviors, such as pair-bonding, social recognition and cognition in mammals including humans. Importantly, AVP modulates social behaviors in a gender-specific manner, perhaps, due to gender differences in the distribution in the brain of AVP and its main receptor AVPR1a.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
The Postgraduate Training Base of Jinzhou Medical University and Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China.
Aims: This study investigated the roles of lateral basal forebrain glial cell line-derived neurotrophic factor (GDNF) signaling and cholinergic neuron activity, apoptosis, and autophagy dysfunction in sleep deprivation-induced increased risk of chronic postsurgical pain (CPSP) in mice.
Methods: Sleep deprivation (6 h per day from -1 to 3 days postoperatively) was administered to mice receiving skin/muscle incision and retraction (SMIR) to determine whether perioperative sleep deprivation induces mechanical and thermal pain hypersensitivity, increases the risk of chronic pain, and causes changes of basal forebrain neurons activity (c-Fos immunostaining), apoptosis (cleaved Caspase-3 expression), autophagy (LC3 and p62 expression) and GDNF expression. Adeno-associated virus (AAV)-GDNF was microinjected into the basal forebrain to see whether increased GDNF expression could reverse sleep deprivation-induced changes in pain duration and cholinergic neuron apoptosis and autophagy.
Exp Eye Res
January 2025
Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200032, China. Electronic address:
Normal perception of visual information relies not only on the quantity and quality of retinal ganglion cells (RGCs), but also on the integrity of the visual pathway, within which RGC central projection predominates. However, the exact changes of RGC central projection under particular pathological conditions remain to be elucidated. Here, we report a whole-brain clearing method modified from iDISCO for 3D visualization of RGC central projection.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
November 2024
Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China.
Norepinephrine (NE) modulates synaptic transmission and long-term plasticity through distinct subtype adrenergic receptor (AR)-mediated-intracellular signaling cascades. However, the role of NE modulates glutamatergic long-term potentiation (LTP) in the hypothalamic paraventricular nucleus (PVN) magnocellular neuroendocrine cells (MNCs) is unclear. We here investigate the effect of NE on high frequency stimulation (HFS)-induced glutamatergic LTP in rat hypothalamic PVN MNCs , by whole-cell patch-clamp recording, biocytin staining and pharmacological methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!