Spatio-temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring.

Environ Pollut

Harvard T. H. Chan School of Public Health, Harvard University, Department of Environmental Health, Boston, MA, USA.

Published: January 2016

This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989-2014. Our preliminary results show a good model performance with R(2) = 0.81. Furthermore, based on the model's results, we analyzed the spatial profile of Tair within the study domain for representative days.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809040PMC
http://dx.doi.org/10.1016/j.envpol.2015.09.007DOI Listing

Publication Analysis

Top Keywords

brightness temperature
8
air temperature
8
spatio-temporal behavior
4
behavior brightness
4
temperature
4
temperature tel-aviv
4
tel-aviv application
4
application air
4
temperature monitoring
4
monitoring study
4

Similar Publications

Gold nanoparticles (AuNPs) have been widely used as efficient and environmentally friendly catalysts due to their high specific surface area and abundant active sites. However, AuNP-based catalytic systems face several challenges, including the instability of AuNPs during the reaction, the difficulty in monitoring the process, which can easily result in insufficient reaction due to short reaction time or waste of resources due to long reaction time, as well as issues of catalyst recovery. This study proposes a novel catalyst integrating various functions, such as high stability, the capacity for real-time monitoring of the catalytic process, and rapid recycling.

View Article and Find Full Text PDF

Transmission electron microscopy, especially at cryogenic temperature, is largely used for studying biological macromolecular complexes. A main difficulty of TEM imaging of biological samples is the weak amplitude contrasts due to electron diffusion on light elements that compose biological organisms. Achieving high-resolution reconstructions implies therefore the acquisition of a huge number of TEM micrographs followed by a time-consuming image analysis.

View Article and Find Full Text PDF

Indocyanine green dyed gauze-guided minimum invasive surgery for anatomical landmarks and preventing gauze remnants: a pilot study.

Langenbecks Arch Surg

January 2025

Department of Chemical Science & Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.

Purpose: We aimed to develop a novel fluorescent surgical gauze dyed with indocyanine green (ICG) to guide surgeons to the target anatomical destination during surgery for real-time navigation and to prevent gauze remnants after surgery.

Methods: Surgical gauze was dyed with an aqueous solution of ICG (5.0 × 10 mol L for Steraze, 1.

View Article and Find Full Text PDF

Magnetic field-dependent magnetization of highly crystalline FeO magnetic nanoparticles has been carried out to understand surface canting structures at low and room temperatures. The exchange bias () values of ∼18 to 27 Oe at 300 K for three samples prepared from different precursors are observed; and a decrease in value is obtained when the samples are measured at 5 K. However, with a decrease in temperature, coercivity () increases.

View Article and Find Full Text PDF

[Molecular authentication of calcined oyster (Ostrea gigas) and its processed products].

Zhongguo Zhong Yao Za Zhi

December 2024

Experimental Research Center, China Academy of Chinese Medical Sciences Beijing 100700, China.

Calcined oyster is a commonly used shellfish traditional Chinese medicine in clinical practice in China. During the processing of oysters, their microscopic characteristics are destroyed, and open-fire calcination can damage the DNA of oysters, making it difficult to identify the primary source. The establishment of a specific polymerase chain reaction(PCR) method for the identification of calcined oysters can provide a guarantee for the safety and clinical efficacy of the medicine and its processed products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!