Metabolite exchange among co-growing cells is frequent by nature, however, is not necessarily occurring at growth-relevant quantities indicative of non-cell-autonomous metabolic function. Complementary auxotrophs of Saccharomyces cerevisiae amino acid and nucleotide metabolism regularly fail to compensate for each other's deficiencies upon co-culturing, a situation which implied the absence of growth-relevant metabolite exchange interactions. Contrastingly, we find that yeast colonies maintain a rich exometabolome and that cells prefer the uptake of extracellular metabolites over self-synthesis, indicators of ongoing metabolite exchange. We conceived a system that circumvents co-culturing and begins with a self-supporting cell that grows autonomously into a heterogeneous community, only able to survive by exchanging histidine, leucine, uracil, and methionine. Compensating for the progressive loss of prototrophy, self-establishing communities successfully obtained an auxotrophic composition in a nutrition-dependent manner, maintaining a wild-type like exometabolome, growth parameters, and cell viability. Yeast, as a eukaryotic model, thus possesses extensive capacity for growth-relevant metabolite exchange and readily cooperates in metabolism within progressively establishing communities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695387 | PMC |
http://dx.doi.org/10.7554/eLife.09943 | DOI Listing |
Comput Struct Biotechnol J
December 2024
NovaMechanics Ltd, Nicosia 1070, Cyprus.
The CompSafeNano project, a Research and Innovation Staff Exchange (RISE) project funded under the European Union's Horizon 2020 program, aims to advance the safety and innovation potential of nanomaterials (NMs) by integrating cutting-edge nanoinformatics, computational modelling, and predictive toxicology to enable design of safer NMs at the earliest stage of materials development. The project leverages Safe-by-Design (SbD) principles to ensure the development of inherently safer NMs, enhancing both regulatory compliance and international collaboration. By building on established nanoinformatics frameworks, such as those developed in the H2020-funded projects NanoSolveIT and NanoCommons, CompSafeNano addresses critical challenges in nanosafety through development and integration of innovative methodologies, including advanced models, approaches including machine learning (ML) and artificial intelligence (AI)-driven predictive models and 1st-principles computational modelling of NMs properties, interactions and effects on living systems.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel.
Voltage-Dependent Anion Channel 1 (VDAC1) is a mitochondrial outer membrane protein that plays a crucial role in regulating cellular energy metabolism and apoptosis by mediating the exchange of ions and metabolites between mitochondria and the cytosol. Mitochondrial dysfunction and oxidative stress are central features of neurodegenerative diseases. The pivotal functions of VDAC1 in controlling mitochondrial membrane permeability, regulating calcium balance, and facilitating programmed cell death pathways, position it as a key determinant in the delicate balance between neuronal viability and degeneration.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, Princeton University, Princeton, NJ 08544.
Chemical communication between marine bacteria and their algal hosts drives population dynamics and ultimately determines the fate of major biogeochemical cycles in the ocean. To gain deeper insights into this small molecule exchange, we screened niche-specific metabolites as potential modulators of the secondary metabolome of the roseobacter, . Metabolomic analysis led to the identification of a group of cryptic lipids that we have termed roseoceramides.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France.
Geographical, ethological, temporal and ecological barriers can affect interbreeding between populations deriving from an ancestral population, this progressively leading to speciation. A rare case of incipient speciation currently occurs between Drosophila melanogaster populations sampled in Zimbabwe (Z) and all other populations (M). This phenomenon was initially characterized by Z females refusing to mate with M males.
View Article and Find Full Text PDFMol Imaging Biol
January 2025
Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
Purpose: Positron Emission Tomography (PET) scans with radioligands targeting tau neurofibrillary tangles (NFT) have accelerated our understanding of the role of misfolded tau in neurodegeneration. While intended for human research, applying these radioligands to small animals establishes a vital translational link. Transgenic animal models of dementia, such as the tau rat SHR24, play a crucial role in enhancing our understanding of these disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!