Multifunctional catalytic platform for peroxidase mimicking, enzyme immobilization and biosensing.

Biosens Bioelectron

Institute of Chemistry, State University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, SP, Brazil; National Institute of Science and Technology of Bioanalytics (INCTBio), Institute of Chemistry - UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP, Brazil. Electronic address:

Published: March 2016

A hybrid platform based on ionic liquid-based alkoxysilane functionalized mesoporous silica was applied for the synthesis of supported Pt nanoparticles with peroxidase-like catalytic activity. The positively charged groups (imidazolium) chemically bonded to the surface provide dual-functionality as ion-exchangers to the hybrid material, firstly used for the in situ synthesis of the highly dispersed Pt nanostructures and, secondly, for the immobilization of biological species aiming biosensing purposes. The peroxidase-like catalytic activity of the SiO2/Imi/Pt material was evaluated towards the H2O2-mediated oxidation of a chromogenic peroxidase substrate (TMB), allowing the colorimetric detection of H2O2. Finally, to further explore the practical application of this nanomaterial-based artificial system, glucose oxidase (GOx) was immobilized on the catalytic porous platform and a bioassay for the colorimetric determination of glucose was successfully conducted as a model system. The enzyme-like catalytic properties of the SiO2/Imi/Pt as well as its ability to immobilize and keep active biological entities on the porous structure indicate that this hybrid porous platform is potentially useful for the development of biosensing devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2015.10.042DOI Listing

Publication Analysis

Top Keywords

peroxidase-like catalytic
8
catalytic activity
8
porous platform
8
multifunctional catalytic
4
platform
4
catalytic platform
4
platform peroxidase
4
peroxidase mimicking
4
mimicking enzyme
4
enzyme immobilization
4

Similar Publications

Surface immobilization of single atoms on heteroatom-doped carbon nanospheres through phenolic-mediated interfacial anchoring for highly efficient biocatalysis.

Chem Sci

January 2025

BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China

Single-atom catalysts (SACs) dispersed on support materials exhibit exceptional catalytic properties that can be fine-tuned through interactions between the single atoms and the support. However, selectively controlling the spatial location of single metal atoms while simultaneously harmonizing their coordination environment remains a significant challenge. Here, we present a phenolic-mediated interfacial anchoring (PIA) strategy to prepare SACs with Fe single atoms anchored on the surface of heteroatom-doped carbon nanospheres.

View Article and Find Full Text PDF

Zirconium-doped iron oxide nanoparticles for enhanced peroxidase-like activity.

Talanta

January 2025

College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, PR China. Electronic address:

FeO nanoparticles (NPs) have emerged as pioneering nanozymes with applications in clinical diagnosis, environmental protection and biosensing. However, it is currently limited by insufficient catalytic activity due to poor electron transfer. In this study, we synthesized electron-rich-Zr-doped defect-rich FeO NPs (ZrFeO) using a one-pot solvothermal method.

View Article and Find Full Text PDF

Carnivorous fishes can possess higher mercury levels than omnivorous fishes: A selective detection and efficient removal strategy for mercury using magnetic melamine-platinum composites fabricated by supermolecular self-assembly.

J Hazard Mater

January 2025

Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, PR China; Zhejiang-French Digital Monitoring Laboratory for Aquatic Resources and Environment, Huzhou University, Huzhou 313000, PR China. Electronic address:

Mercury (II) ion (Hg) as highly toxic heavy metal may be accumulated in aquatic ecosystems and animals species so as to enter human body to conduct health harm. To ensure the safety of fishes food, hence, it is of great interest to evaluate the Hg levels in different kinds of fishes as well as Hg removal in aquaculture tailwater. In this article, a selective colormetric detection and efficient removal strategy has been developed for Hg ions by the controlled supermolecular self-assembly of melamine (MA)-platinum (Pt) composites onto mesoporous FeO carriers.

View Article and Find Full Text PDF

Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA.

View Article and Find Full Text PDF

Preparation of CHS-FeO@@ZIF-8 peroxidase-mimic with an ultra-thin hollow layer for ultrasensitive electrochemical detection of kanamycin.

Mikrochim Acta

January 2025

Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.

A highly sensitive and selective electrochemical biosensor was developed for the detection of kanamycin using a core-hollow-shell structured peroxidase-mimic nanozyme, CHS-Fe₃O₄@@ZIF-8. The synthesized CHS-FeO@@ZIF-8 was characterized with scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was found that the CHS-FeO@@ZIF-8 exhibits excellent peroxidase-like activity due to  its ultra-thin hollow layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!