Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4663970 | PMC |
http://dx.doi.org/10.7554/eLife.09123 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, Department of Mathematics, New York University, New York, NY 10012.
Mechanical systems with moving points of contact-including rolling, sliding, and impacts-are common in engineering applications and everyday experiences. The challenges in analyzing such systems are compounded when an object dynamically explores the complex surface shape of a moving structure, as arises in familiar but poorly understood contexts such as hula hooping. We study this activity as a unique form of mechanical levitation against gravity and identify the conditions required for the stable suspension of an object rolling around a gyrating body.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.
A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.
View Article and Find Full Text PDFPLoS One
January 2025
Orthopaedic Surgery and Traumatology, University Hospital Basel, Basel, Switzerland.
The ARCR_Pred study was initiated to document and predict the safety and effectiveness of arthroscopic rotator cuff repair (ARCR) in a representative Swiss patient cohort. In the present manuscript, we aimed to describe the overall and baseline characteristics of the study, report on functional outcome data and explore case-mix adjustment and differences between public and private hospitals. Between June 2020 and November 2021, primary ARCR patients were prospectively enrolled in a multicenter cohort across 18 Swiss and one German orthopedic center.
View Article and Find Full Text PDFPLoS One
January 2025
Key Laboratory of Sports Engineering of General Administration of Sport of China, Wuhan Sports University, Wuhan, Hubei Province, China.
Purpose: Previous studies have demonstrated significant biomechanical differences between individuals with chronic ankle instability (CAI) and healthy controls during the Y-balance test. This study aimed to examine the effects of kinesio taping (KT) on lower limb biomechanical characteristics during the Y-balance anterior reach task in individuals with CAI.
Methods: A total of 30 participants were recruited, comprising 15 individuals with CAI and 15 healthy controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!