Enriched environment (EE) has been shown to have beneficial effects on cognitive recovery after brain injury. Typical EE comprises three components: (i) enlarged living area providing physical activation, (ii) sensory stimulation, and (iii) social stimulation. The present study assessed the specific contribution of the social stimulation. Animals were randomly divided into groups of (1) a typical EE, (2) pure social enrichment (SE), or (3) standard housing (SH) and subjected to either a sham operation or transection of the fimbria-fornix (FF). The effect of these conditions on acquisition of a delayed alternation task in a T-maze was assessed. The sham control groups were not affected by housing conditions. In the lesioned groups, both typical EE and SE improved the task acquisition, compared to SH. A baseline one-hour activity measurement confirmed an equal level of physical activity in the EE and SE groups. After delayed alternation testing, pharmacological challenges (muscarinergic antagonist scopolamine and dopaminergic antagonist SKF-83566) were used to assess cholinergic and dopaminergic contributions to task solution. Scopolamine led to a marked impairment in all groups. SKF-83566 significantly enhanced the performance of the lesioned group subjected to SE. The results demonstrate that housing in a typical as well as atypical EE can enhance cognitive recovery after mechanical injury to the hippocampus. The scopolamine challenge revealed a cholinergic dependency during task performance in all groups, regardless of lesion and housing conditions. The dopaminergic challenge revealed a difference in the neural substrates mediating recovery in the lesioned groups exposed to different types of housing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2015.10.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!