Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

Environ Sci Pollut Res Int

Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok, 65000, Thailand.

Published: February 2016

This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-015-5570-8DOI Listing

Publication Analysis

Top Keywords

co-doped tio2
28
tio2 co-doped
20
tio2
19
c-doped tio2
16
n-doped tio2
16
photocatalytic oxidation
12
tio2 n-doped
12
formation rate
12
hydroxyl radicals
8
visible light
8

Similar Publications

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy).

View Article and Find Full Text PDF

Photocatalytic selective oxidation of glycerol to formic acid and formaldehyde over surface cobalt-doped titanium dioxide.

J Colloid Interface Sci

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China. Electronic address:

Glycerol is one of the most important biomass platform compounds that is a by-product of biodiesel production, and the selective cleavage of the CC bond of glycerol to produce liquid hydrogen carriers (i.e., formic acid and formaldehyde) offers a viable strategy to alleviate the currently faced energy shortages.

View Article and Find Full Text PDF

Ni-Co doped TiO catalyst for efficient photocatalytic degradation of Malachite Green under UV and direct sunlight.

Environ Sci Pollut Res Int

January 2025

Materials and Process Development Laboratory, Department of Chemical Engineering, Birla Institute of Technology and Science, K. K. Birla Goa Campus, Pilani, Goa, 403726, India.

In the present study, combustion-synthesized TiO nanoparticles were wet impregnated with Ni, Co, and Ni-Co, respectively. The photocatalytic performance of synthesized catalysts was evaluated against Malachite Green dye. The synthesized materials were characterized for crystallite size, surface morphology, elemental composition, and band gap using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and ultra-violet diffused reflectance spectroscopy, respectively.

View Article and Find Full Text PDF

The high overpotential of the oxygen evolution reaction (OER) and the strong corrosion of the anode are the main problems currently faced by the zinc hydrometallurgical process. This study achieved the successful synthesis of titanium dioxide nanotubes doped by Al and V on a TC4 alloy. Subsequently, a composite electrode, TC4/AVTN-7/PbO-ZrO-CoO, was prepared utilizing composite electrodeposition.

View Article and Find Full Text PDF

Volatile Organic Compounds (VOCs) are highly harmful to human beings and other organisms, and thus the elimination of VOCs is extremely urgent. Here, La-Si co-doped TiO microsphere photocatalysts, which were prepared by a hydrothermal method, exhibited high photocatalytic activity in the decomposition of formaldehyde compared with TiO. The improved activity can be attributed to the promoted separation efficiency and density of the charge carriers, as verified by the electrochemical results in combination with density functional theory calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!