Bioengineered quantum dot/chitosan-tripeptide nanoconjugates for targeting the receptors of cancer cells.

Int J Biol Macromol

Center of Nanoscience, Nanotechnology and Innovation-CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Escola de Engenharia, Bloco 2/2233, Pampulha, Belo Horizonte 31.270-901 MG, Brazil. Electronic address:

Published: January 2016

Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular level for diagnostic and therapeutic purposes. In this work, we report the synthesis of novel multifunctional nanoconjugates composed of fluorescent inorganic semiconductor quantum dot (QD) cores and tripeptide-modified polysaccharide organic shells. These structures were designed for targeting and imaging the αvβ3 integrin receptors of cancer cells. Initially, chitosan was covalently bound with the RGD peptide using a crosslinker to form bioconjugates (RGD-chitosan), which were later utilized as capping ligands for the production of surface-functionalized CdS QDs via a single-step process in aqueous media at room temperature. These core-shell nanostructures were extensively characterized by UV-vis spectroscopy, photoluminescence (PL) spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), zeta potential (ZP) and dynamic light scattering (DLS). The TEM images and the UV-vis absorption results indicated the formation of ultra-small CdS QD nanocrystals with average diameters between 2.0 and 3.0 nm. In addition, the PL results demonstrated that the nanobioconjugates exhibited intense green fluorescence under excitation. The CdS-RGD-chitosan systems were effective at specific targeting integrin when assayed in vitro using two model cell cultures, HEK 293 (non-cancerous human embryonic kidney cell) and SAOS (cancerous sarcoma osteogenic-derived cells) imaged using fluorescence microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2015.10.047DOI Listing

Publication Analysis

Top Keywords

receptors cancer
8
cancer cells
8
bioengineered quantum
4
quantum dot/chitosan-tripeptide
4
dot/chitosan-tripeptide nanoconjugates
4
nanoconjugates targeting
4
targeting receptors
4
cells nanobiomaterials
4
nanobiomaterials engineered
4
engineered recognize
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!