Forsythiaside A Exhibits Anti-inflammatory Effects in LPS-Stimulated BV2 Microglia Cells Through Activation of Nrf2/HO-1 Signaling Pathway.

Neurochem Res

The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.

Published: April 2016

Inflammation and oxidative stress have been reported to play critical roles in the pathogenesis of neurodegenerative disease. Forsythiaside A, a phenylethanoside product isolated from air-dried fruits of Forsythia suspensa, has been reported to have anti-inflammatory and antioxidant effects. In this study, the anti-inflammatory effects of forsythiaside A on LPS-stimulated BV2 microglia cells and primary microglia cells were investigated. The production of inflammatory mediators TNF-α, IL-1β, NO and PGE2 were detected in this study. NF-κB, nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) expression were detected by western blot analysis. Our results showed that forsythiaside A significantly inhibited LPS-induced inflammatory mediators TNF-α, IL-1β, NO and PGE2 production. LPS-induced NF-κB activation was suppressed by forsythiaside A. Furthermore, forsythiaside A was found to up-regulate the expression of Nrf2 and HO-1. In conclusion, this study demonstrates that forsythiaside A inhibits LPS-induced inflammatory responses in BV2 microglia cells and primary microglia cells through inhibition of NF-κB activation and activation of Nrf2/HO-1 signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-015-1731-xDOI Listing

Publication Analysis

Top Keywords

microglia cells
20
bv2 microglia
12
anti-inflammatory effects
8
lps-stimulated bv2
8
activation nrf2/ho-1
8
nrf2/ho-1 signaling
8
signaling pathway
8
cells primary
8
primary microglia
8
inflammatory mediators
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!