Advanced Sodium Ion Battery Anode Constructed via Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder.

ACS Nano

Department of Mechanical and Nuclear Engineering, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.

Published: December 2015

Maintaining structural stability is a great challenge for high-capacity conversion electrodes with large volume change but is necessary for the development of high-energy-density, long-cycling batteries. Here, we report a stable phosphorus anode for sodium ion batteries by the synergistic use of chemically bonded phosphorus-carbon nanotube (P-CNT) hybrid and cross-linked polymer binder. The P-CNT hybrid was synthesized through ball-milling of red phosphorus and carboxylic group functionalized carbon nanotubes. The P-O-C bonds formed in this process help maintain contact between phosphorus and CNTs, leading to a durable hybrid. In addition, cross-linked carboxymethyl cellulose-citric acid binder was used to form a robust electrode. As a result, this anode delivers a stable cycling capacity of 1586.2 mAh/g after 100 cycles, along with high initial Coulombic efficiency of 84.7% and subsequent cycling efficiency of ∼99%. The unique electrode framework through chemical bonding strategy reported here is potentially inspirable for other electrode materials with large volume change in use.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b04474DOI Listing

Publication Analysis

Top Keywords

sodium ion
8
chemical bonding
8
cross-linked polymer
8
polymer binder
8
large volume
8
volume change
8
p-cnt hybrid
8
advanced sodium
4
ion battery
4
battery anode
4

Similar Publications

Soda saline-alkali soils pose significant challenges to agricultural productivity due to high pH and excessive sodium content. This study investigated the removal of excess salts in soda saline-alkali soil through electrochemical treatment (ECT). Traditional ECT often led to uneven soil pH distribution, with acidic conditions near the anode and alkaline conditions near the cathode, which limited its effectiveness for soil improvement.

View Article and Find Full Text PDF

Porous KTi(PO) nanoparticles are synthesized via a solvothermal method and subsequently modified with nitrogen-doped carbon layers by using polydopamine as the carbon source. The resultant KTi(PO)@N-doped carbon composite (KTP@NC) exhibits a preserved porous structure with abundant pores, facilitating ion diffusion and electrolyte infiltration. Various characterizations, including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy, reveal the successful formation of an interconnected nitrogen-doped carbon network.

View Article and Find Full Text PDF

MoSe/BiSe Heterostructure Immobilized in N-Doped Carbon Nanosheets Assembled Flower-Like Microspheres for High-Rate Sodium Storage.

Small

March 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

A key challenge for sodium-ion batteries (SIBs) lies in identifying suitable host materials capable of accommodating large Na ions while addressing sluggish chemical kinetics. The unique interfacial effects of heterogeneous structures have emerged as a critical factor in accelerating charge transfer and enhancing reaction kinetics. Herein, MoSe/BiSe composites integrated with N-doped carbon nanosheets are synthesized, which spontaneously self-assemble into flower-like microspheres (MoSe/BiSe@N-C).

View Article and Find Full Text PDF

P2-type NaNiMnO (NNMO) as cathode material for sodium-ion batteries (SIBs) largely suffers from continuous accumulation of local stress caused by destructive structural evolution and irreversible oxygen loss upon cycling, leading to rapid capacity degradation. Herein, a strategy of negative enthalpy doping (NED), wherein transition metal (TM) sites are substituted with 0.01 mol each Sn, Sb, Cu, Ti, Mg, and Zn to increase the stability of the TM layers, is proposed.

View Article and Find Full Text PDF

The direct effects of ionizing radiation on antibiotics are largely unknown. Here, we report mass spectra of the cationic products of the irradiation of three antibiotics by carbon ions at 10.4 MeV kinetic energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!