Detection of desired target chemicals in a sensitive and selective manner is critically important to protect human health, environment and national security. Nature has been a great source of inspiration for the design of sensitive and selective sensors. In this mini-review, we overview the recent developments in bio-inspired sensor development. There are four major components of sensor design: design of receptors for specific targets; coating materials to integrate receptors to transducing machinery; sensitive transducing of signals; and decision making based on the sensing results. We discuss the biomimetic methods to discover specific receptors followed by a discussion about bio-inspired nanocoating material design. We then review the recent developments in phage-based bioinspired transducing systems followed by a discussion of biomimetic pattern recognition-based decision making systems. Our review will be helpful to understand recent approaches to reverse-engineer natural systems to design specific and sensitive sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5nr05226b | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China.
The development of silk fibroin-based hydrogels with excellent biocompatibility, aqueous processability, and facile controllability in structure is indeed an exciting advancement for biological research and strain sensor applications. However, silk fibroin-based hydrogel strain sensors that combine high conductivity, high stretchability, reusability, and high selectivity are still desired. Herein, we report a simple method for preparing double-network hydrogels including silk fibroin and poly(acrylic acid) sodium-polyacrylate (PAA-PAAS) networks.
View Article and Find Full Text PDFSevere environmental contamination can result from high concentrations of iron ions, which can have a detrimental impact on human health and well-being. Consequently, it is imperative to develop novel materials that can address environmental issues. Metal-organic frameworks (MOFs) possess unique properties that render them efficient fluorescent probes for the rapid and precise detection of these pollutants.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Engineering, POSTECH, Pohang, 37673, Republic of Korea.
Liquid crystals (LCs) are widely used as promising stimuli-responsive materials due to their unique combination of liquid and crystalline properties, providing the capability to sense even molecular-scale events and amplify them into macroscopic optical outputs. However, encoding a high level of selectivity to a specific intermolecular event remains a key challenge, leading to prior studies regarding chemically functionalized LC interfaces. Herein, we propose an integrative strategy to significantly advance the design of chemo-responsive LCs through a deep fundamental understanding on the orientational coupling of LCs with new functional molecules, organic ionic plastic crystals (OIs), presented at LC interfaces.
View Article and Find Full Text PDFEur J Heart Fail
January 2025
Medical University of South Carolina, Charleston, SC, USA.
Aims: Early identification and management of worsening heart failure (HF) is necessary to prevent disease progression and hospitalizations. The ALLEVIATE-HF (Algorithm Using LINQ Sensors for Evaluation and Treatment of Heart Failure) trial is a prospective, randomized, controlled, double-blind, multicentre trial that aims to assess the safety and efficacy of using the Reveal LINQ™ insertable cardiac monitor (ICM) in patients with HF to continuously monitor and evaluate HF risk status and guide timely interventions.
Methods: The ICM algorithm uses parameters derived from electrocardiogram (atrial fibrillation [AF], ventricular rate during AF, heart rate variability, and night heart rate), three-axis accelerometer (patient activity duration), and subcutaneous bioimpedance (fluid volume, respiration rate).
Cardiovasc Eng Technol
January 2025
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, MA, Cambridge, USA.
Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!