Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Herein, we report a new method for the crystal growth of two Zn-based MOFs at room temperature (known MOF-5 and a new modification of [{Zn2(TBAPy)(H2O)2}·3.5DEF]n (1)) by employing slow diffusion conditions. Employing both Zn-based MOFs with different pore morphology made it possible to discover an anomalous adsorption of L-histidine in of up to 24.3 × 10(15) molecules cm(-2) at 25 °C. This is one of the first reports aimed not only at describing a new method for the targeted formation of crystalline MOFs and coordination polymers, but also at demonstrating the use of Zn-based MOFs as potential drug delivery materials, with highly effective adsorption of l-histidine given herein as an example.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cc07808c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!