This review aims to give an update on the pathogenesis, clinical manifestations, and diagnosis of arrhythmogenic right ventricular cardiomyopathy (ARVC). Arrhythmogenic right ventricular cardiomyopathy is mainly an autosomal dominant inherited disease linked to mutations in genes encoding desmosomes or desmosome-related proteins. Classic symptoms include palpitations, cardiac syncope, and aborted cardiac arrest due to ventricular arrhythmias. Heart failure may develop in later stages. Diagnosis is based on the presence of major and minor criteria from the Task Force Criteria revised in 2010 (TFC 2010), which includes evaluation of findings from six different diagnostic categories. Based on this, patients are classified as having possible, borderline, or definite ARVC. Imaging is important in ARVC diagnosis, including both echocardiography and cardiac magnetic resonance imaging for detecting structural and functional abnormalities, but importantly these findings may occur after electrical alterations and ventricular arrhythmias. Electrocardiograms (ECGs) and signal-averaged ECGs are analysed for depolarization and repolarization abnormalities, including T-wave inversions as the most common ECG alteration. Ventricular arrhythmias are common in ARVC and are considered a major diagnostic criterion if originating from the RV inferior wall or apex. Family history of ARVC and detection of an ARVC-related mutation are included in the TFC 2010 and emphasize the importance of family screening. Electrophysiological studies are not included in the diagnostic criteria, but may be important for differential diagnosis including RV outflow tract tachycardia. Further differential diagnoses include sarcoidosis, congenital abnormalities, myocarditis, pulmonary hypertension, dilated cardiomyopathy, and athletic cardiac adaptation, which may mimic ARVC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/europace/euv340 | DOI Listing |
Curr Med Chem
January 2025
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
Background: Resistance to lenvatinib poses a serious threat to the therapy of patients with Hepatocellular Carcinoma (HCC). The mechanism by which HCC develops resistance to lenvatinib is currently unknown.
Objective: The aim of this study was to identify key genes and pathways involved in lenvatinib resistance in HCC using bioinformatic analysis and experimental validation.
Heart
January 2025
Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
Background: Cardiac sarcoidosis (CS) is a chronic inflammatory disease characterised by non-caseating granulomas, while arrhythmogenic cardiomyopathy (ACM) is a genetic condition mainly affecting desmosomal proteins. The coexistence of CS and genetic variants associated with ACM is not well understood, creating challenges in diagnosis and management. This study aimed to describe the clinical, imaging and genetic features of patients with both conditions.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan. Electronic address:
Background And Objective: It has been believed that polymorphic ventricular tachycardia (VT) such as torsades de pointes (TdP) seen in patients with long QT syndromes is triggered by creating early afterdepolarization (EAD)-mediated triggered activity (TA). Although the mechanisms creating the TA have been studied intensively, characteristics of the arrhythmogenic (torsadogenic) substrates that link EAD developments to TA formation are still not well understood.
Methods: Computer simulations of excitation propagation in a homogenous two-dimensional ventricular tissue with an anisotropic conduction property were performed to characterize torsadogenic substrates that potentially form TA.
Acta Physiol (Oxf)
February 2025
Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.
View Article and Find Full Text PDFJACC Case Rep
January 2025
Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
Structural abnormalities within the right ventricular outflow tract (RVOT) can present similarly to Brugada syndrome. A 34-year-old woman with no medical history presented with polymorphic ventricular tachycardia/ventricular fibrillation cardiac arrest and initial electrocardiogram showed type I Brugada pattern. Cardiac magnetic resonance imaging revealed prominent tissue thickening at the RVOT with late gadolinium enhancement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!