Lung cancer is still in the first place in terms of both incidence and mortality. In the present study, we demonstrated the effect of curcumin, a phytochemical of the plant Curcuma longa, on expression and activation of Axl receptor tyrosine kinase (RTK) which plays an important role in cell survival, proliferation and anti-apoptosis. Curcumin treatment of non-small cell lung cancer (NSCLC) A549 and H460 cells, was found to decrease Axl protein as well as mRNA levels in a dose- and time-dependent manner. Axl promoter activity was also reduced by curcumin, indicating that curcumin downregulates Axl expression at the transcriptional level. Moreover, Axl phosphorylation in response to binding of its ligand, Gas6, was abrogated by curcumin, suggesting the inhibitory effect of curcumin on Gas6-induced Axl activation. We next found cytotoxic effect of cucumin on both the parental A549 and H460 cells, and their variants which are resistant to cisplatin (A549/CisR and H460/CisR) and paclitaxel (A549/TR and H460/TR). Exposure of these cells to curcumin resulted in dose-dependent decline of cell viability and clonogenic ability. It is further observed that the anti-proliferative effect of curcumin on A549 cells overexpressing Axl protein was reduced, while that on H460 cells transfected Axl specific siRNA was augmented, confirming that curcumin inhibits cell proliferation via downregulation of Axl expression. In addition, curcumin was found to cause the induction of p21, a cyclin-dependent kinase inhibitor, and reduction of X-linked inhibitor of apoptosis protein (XIAP), an anti-apoptotic molecule, in parental H460 cells as well as chemoresistant cells, H460/CisR and H460/TR. Taken together, our data imply that Axl RTK is a novel target of curcumin through which it exerts anti-proliferative effect in both parental and chemoresistant NSCLC cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijo.2015.3216 | DOI Listing |
Phytochemistry
January 2025
Research Center for Marine Drugs, Clinical Pharmacy College, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China. Electronic address:
Four previously undescribed cyclic peptides, reniochpeptins A-D (1-4), were isolated from the marine sponge Reniochalina sp. Their structures were elucidated through comprehensive spectroscopic analyses and a modified advanced Marfey's method. This method utilized ultra-high-performance liquid chromatography coupled with tandem multiple reaction monitoring mass spectrometry, employing a CORTECS T column to achieve simultaneous separation of derivatized -Leu, -Ile, -allo-Ile, -Leu, -Ile, and -allo-Ile within 25 minutes in a single analytical run.
View Article and Find Full Text PDFCytojournal
November 2024
Department of Respiratory and Critical Care Medicine, Wuyi County First People's Hospital, Jinhua, Zhejiang, China.
Objective: Epithelial-mesenchymal transition (EMT) and metastasis are the primary causes of mortality in non-small-cell lung cancer (NSCLC). 5'-3' exoribonuclease 2 (XRN2) plays an important role in the process of tumor EMT. Thus, this investigation mainly aimed to clarify the precise molecular pathways through which XRN2 contributes to EMT and metastasis in NSCLC.
View Article and Find Full Text PDFFundam Res
November 2024
Department of Plasma Bio Display, Kwangwoon University, Seoul 139701, South Korea.
Lung cancer continues to be the second most common cancer diagnosed and the main cause of cancer-related death globally, which requires novel and effective treatment strategies. When considering treatment options, non-small cell lung cancer (NSCLC) remained a challenge, seeking new therapeutic strategies High-power microwave (HPM) progressions have facilitated the advancement of new technologies as well as improvements to those already in use. The impact of HPM on NSCLC has not been investigated before.
View Article and Find Full Text PDFEur J Pharmacol
February 2025
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal; FFUP - Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal. Electronic address:
Multidrug resistance (MDR) is a major challenge in cancer research. Collateral sensitizers, compounds that exploit the enhanced defense mechanisms of MDR cells as weaknesses, are a proposed strategy to overcome MDR. Our previous work reported the synthesis of two novel Isoquinolinequinone (IQQ) N-oxides that induce collateral sensitivity in MDR ABCB1-overexpressing non-small cell lung cancer (NSCLC) and colorectal cancer cells.
View Article and Find Full Text PDFFront Immunol
December 2024
State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China.
Background: To determine the role of N-methyladenosine (mA) modification in the tumor immune microenvironment (TIME), as well as their association with lung adenocarcinoma (LUAD).
Methods: Consensus clustering was performed to identify the subgroups with distinct immune or mA modification patterns using profiles from TCGA. A risk score model was constructed using least absolute shrinkage and selection operator regression and validated in two independent cohorts and LUAD tissue microarrays.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!