We use numerical simulations to study the phase behavior of self-propelled spherical and dumbbellar particles interacting via micro-phase separation inducing potentials. Our results indicate that under the appropriate conditions, it is possible to drive the formation of two new active states; a spinning cluster crystal, i.e. an ordered mesoscopic phase having finite size spinning crystallites as lattice sites, and a fluid of living clusters, i.e. a two dimensional fluid where each "particle" is a finite size living cluster. We discuss the dynamics of these phases and suggest ways of extending their stability under a wide range of active forces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5sm02350e | DOI Listing |
Protein Sci
February 2025
Graduate School of Engineering, Osaka University, Osaka, Japan.
Amyloid fibril formation of α-synuclein (αSN) is a hallmark of synucleinopathies. Although the previous studies have provided numerous insights into the molecular basis of αSN amyloid formation, it remains unclear how αSN self-assembles into amyloid fibrils in vivo. Here, we show that αSN amyloid formation is accelerated in the presence of two macromolecular crowders, polyethylene glycol (PEG) (MW: ~10,000) and dextran (DEX) (MW: ~500,000), with a maximum at approximately 7% (w/v) PEG and 7% (w/v) DEX.
View Article and Find Full Text PDFFood Chem
March 2025
Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China. Electronic address:
Enhancement mechanism of ι-carrageenan on the network structure and gel-related properties of soy protein isolate (SPI)/λ-carrageenan system was investigated. Adding ι-carrageenan decreased SPI particles' size in nano-scale, reduced hydrophobic interactions by suppressing exposure of hydrophobic groups, and increased the disulfide bonds in SPI. With rising ι-carrageenan content (< 0.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Adhesion and Adhesives Laboratory, University of Alicante, 03080 Alicante, Spain.
Dynamic non-covalent interactions between polycarbonate soft segments have been proposed for explaining the intrinsic self-healing of polyurethanes synthesized with polycarbonate polyols (PUs) at 20 °C. However, these self-healing PUs showed insufficient mechanical properties, and their adhesion properties have not been explored yet. Different PUs with self-healing at 20 °C, acceptable mechanical properties, and high shear strengths (similar to the highest ones reported in the literature) were synthesized by using blends of polycarbonate polyols of molecular weights 1000 and 2000 Da (CD1000 + CD2000).
View Article and Find Full Text PDFPolymers (Basel)
October 2024
Adhesion and Adhesives Laboratory, University of Alicante, 03080 Alicante, Spain.
Polyurethanes (PUs) synthesized with blends of polycarbonate and polyester polyols (CD+PEs) showed intrinsic self-healing at 20 °C. The decrease in the polycarbonate soft segments content increased the self-healing time and reduced the kinetics of self-healing of the PUs. The percentage of C-O species decreased and the ones of C-N and C=O species increased by increasing the polyester soft segments in the PUs, due to higher micro-phase separation.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, the Netherlands. Electronic address:
Hypothesis: Films that develop compositional heterogeneity during drying offer a promising approach for achieving tailored functionalities. These functionalities can be realized by strategically directing different components during the drying process. One approach to achieve this is through spontaneous size segregation of colloidal particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!