The aim of the present study was to investigate the protective effects of camel milk on hepatic pathogenicity induced by experimental infection with Escherichia (E. coli) and Staphylococcus aureus (S. aureus) in Wistar rats. The rats were divided into six groups: The control and camel milk groups received water and camel milk, respectively; two groups received camel milk for 2 weeks prior to intraperitoneal injection of either E. coli or S. aureus; and two groups were injected intraperitoneally with E. coli and S. aureus, respectively. All animals were maintained under observation for 7 days prior to biochemical and gene expression analyses. The rats treated with camel milk alone exhibited no changes in expression levels of glutamic‑pyruvate transaminase (GPT) or glutamic‑oxaloacetic transaminase (GOT), compared with the water‑treated group. The E. coli‑ and S. aureus‑injected rats exhibited a significant increase in oxidative stress, and prior treatment with camel milk normalized the observed changes in the expression levels of GPT, GOT and malondialdehyde (MDA). Treatment with camel milk decreased the total bacterial count in liver tissue samples obtained from the rats injected with E. coli and S. aureus. Camel milk administration increased the expression levels of glutathione‑S‑transferase and superoxide dismutase, which were downregulated following E. coli and S. aureus injection. In addition, camel milk downregulated the increased expression of interleukin‑6 and apoptosis‑associated genes. Of note, administration of camel milk alone increased the expression levels of the B cell lymphoma 2‑associated X protein and survivin anti‑apoptotic genes, and supplementation prior to the injection of E. coli and S. aureus induced further upregulation, In conclusion, camel milk exerted protective effects against E. coli and S. aureus pathogenicity, by modulating the extent of lipid peroxidation, together with the antioxidant defense system, immune cytokines, apoptosis and the expression of anti-apoptotic genes in the liver of Wistar rats.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2015.4486DOI Listing

Publication Analysis

Top Keywords

camel milk
48
e coli s aureus
20
expression levels
16
protective effects
12
camel
12
milk
12
wistar rats
12
increased expression
12
effects camel
8
pathogenicity induced
8

Similar Publications

Background: The effects of camel milk in inflammation and systemic oxidative stress of cigarette smoke (CS)-induced chronic obstructive pulmonary disease (COPD) associated with small airway inflammation in rats were investigated.

Methods: 35 male Wistar rats were randomly divided into five groups: (a) control, (b) CS-exposed rats, c and (d) CS-exposed rats treated with the 4 and 8 mL/kg camel milk, and (e) CS-exposed rats treated with 1 mg/kg dexamethasone.

Results: Total and differential WBC counts, serum level of TNF- and malondialdehyde (MDA) level in serum and homogenized tissues of the heart, kidney, liver, and testicle were significantly increased, but catalase (CAT), superoxide dismutase (SOD) and thiol levels were significantly decreased in CS-exposed rats ( < 0.

View Article and Find Full Text PDF

Camel mastitis especially caused by Staphylococcus aureus (S. aureus), is a major risk to animal health and milk production. The current investigation evaluated the antibiotic susceptibility and virulence factors of S.

View Article and Find Full Text PDF

Camel milk has a unique composition that sets it apart from other types of animal milk, which has captured the interest of medical and scientific communities. Extracellular vesicles (EVs) mainly contain exosomes (Exos, 30-200 nm) and microvesicles (MVs, 200-1000 nm). Camel milk EVs, particularly Exos, which we named EVs/Exos, have arisen as a fascinating area of scientific inquiry, holding enormous potential for the future of biomedicine due to their anticancer, antibacterial, antidiabetic nephropathy, and immunostimulatory impacts.

View Article and Find Full Text PDF

Beyond nutrition: Exploring immune proteins, bioactive peptides, and allergens in cow and Arabian camel milk.

Food Chem

December 2024

Edith Cowan University, School of Science, Joondalup, WA 6027, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia; Commonwealth Scientific and Industrial Research Organisation, 306 Carmody Rd, St Lucia Agriculture and Food, Brisbane, QLD 4067, Australia. Electronic address:

Bovine milk has dominated the dairy segment, yet alternative milk sources are gaining attention due to perceived superior health benefits, with immune proteins and bioactive peptides (BPs) contributing to these benefits. Fractionation affects protein recovery and composition. Here, the cream fraction resulted in the highest yield of proteins, identifying 1143 camel and 851 cow proteins.

View Article and Find Full Text PDF

Colorectal cancer (CRC) has the highest mortality rate among cancer types, emphasizing the need for auxiliaries to 5-fluorouracil (5-FU) due to resistance and side effects. Metabolites produced by probiotic bacteria exhibit promising anticancer properties against CRC. In the current study, the anticancer effects of cell extract of three potential probiotic lactobacilli strains isolated from camel milk, Lactobacillus helveticus, Lactobacillus gallinarum, and Lactiplantibacillus plantarum, as well as that of the standard probiotic strain Lacticaseibacillus rhamnosus GG (LGG), on the human colon cancer cell line (HT-29) and the normal HEK293 cell line separately or in combination with 5-FU, were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!