The ATPase family, AAA domain containing 2 (ATAD2) is highly expressed in multiple cancers. We aim to understand the clinical and biological significance of ATAD2 over-expression in hepatocellular carcinoma (HCC), as a means to validate it as a therapeutic target in HCC. We demonstrated that ATAD2 was over-expressed in HCC patients, where high ATAD2 levels were significantly correlated with aggressive phenotypes such as high AFP levels, advanced tumor stages, and vascular invasion. Using RNA interference, suppression of ATAD2 in HCC cell lines decreased cell viability, migration, and invasion, and induced apoptosis in vitro. Furthermore, we identified p53 and p38 as key proteins that mediate apoptosis induced by ATAD2 suppression. In HCC cells, we demonstrated that ATAD2 directly interacted with MKK3/6, which prevented p38 activation and therefore inhibited p38-mediated apoptosis. In vivo, suppression of ATAD2 impaired the growth of HepG2 and Hep3B subcutaneous xenografts, accompanied by enhanced apoptosis and p-p53 and p-p38 levels. Our results validate that ATAD2 is an important negative regulator of apoptosis, and that neutralizing its activity has promising anti-tumor effects in HCC cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747184 | PMC |
http://dx.doi.org/10.18632/oncotarget.6152 | DOI Listing |
Funct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFBlood
December 2024
Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a poor prognosis and limited options for targeted therapies. Identifying new molecular targets to develop novel therapeutic strategies is the pressing immediate issue in T-ALL. Here, we observed high expression of WD Repeat-Containing Protein 5 (WDR5) in T-ALL; with in vitro and in vivo models we demonstrated the oncogenic role of WDR5 in T-ALL by activating cell cycle signaling through its new downstream effector, ATPase family AAA domain-containing 2 (ATAD2).
View Article and Find Full Text PDFInt J Mol Sci
August 2024
College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
Skeletal muscle satellite cells (SMSCs), a type of myogenic stem cell, play a pivotal role in postnatal muscle regeneration and repair in animals. Circular RNAs (circRNAs) are a distinct class of non-coding RNA molecules capable of regulating muscle development by modulating gene expression, acting as microRNAs, or serving as protein decoys. In this study, we identified circ_14820, an exonic transcript derived from adenosine triphosphatase family protein 2 (ATAD2), through initial RNA-Seq analysis.
View Article and Find Full Text PDFCancers (Basel)
April 2024
Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
In hypoxic regions of malignant solid tumors, cancer cells acquire resistance to conventional therapies, such as chemotherapy and radiotherapy, causing poor prognosis in patients with cancer. It is widely recognized that some of the key genes behind this are hypoxia-inducible transcription factors, e.g.
View Article and Find Full Text PDFPathol Res Pract
September 2023
Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China. Electronic address:
MiR-139-5p is a suppressor in multiple types of cancer. However, whether miR-139-5p affects NSCLC is unknown. In this study, miR-139-5p expression in clinical samples was examined by real-time PCR and in situ hybridization (ISH).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!