The main characteristic of cancers, including breast cancer, is the ability of cancer cells to proliferate uncontrollably. However, the underlying mechanisms of cancer cell proliferation, especially those regulated by the RNA binding protein tristetraprolin (TTP), are not completely understood. In this study, we found that TTP inhibits cell proliferation in vitro and suppresses tumor growth in vivo through inducing cell cycle arrest at the S phase. Our studies demonstrate that TTP inhibits c-Jun expression through the C-terminal Zn finger and therefore increases Wee1 expression, a regulatory molecule which controls cell cycle transition from the S to the G2 phase. In contrast to the well-known function of TTP in regulating mRNA stability, TTP inhibits c-Jun expression at the level of transcription by selectively blocking NF-κB p65 nuclear translocation. Reconstitution of NF-κB p65 completely abolishes the inhibition of c-Jun transcription by TTP. Moreover, reconstitution of c-Jun in TTP-expressing breast tumor cells diminishes Wee1 overexpression and promotes cell proliferation. Our results indicate that TTP suppresses c-Jun expression that results in Wee1 induction which causes cell cycle arrest at the S phase and inhibition of cell proliferation. Our study provides a new pathway for TTP function as a tumor suppressor which could be targeted in tumor treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747181PMC
http://dx.doi.org/10.18632/oncotarget.6149DOI Listing

Publication Analysis

Top Keywords

cell cycle
16
cell proliferation
16
cycle arrest
12
ttp inhibits
12
c-jun expression
12
cell
8
breast tumor
8
tumor cells
8
ttp
8
arrest phase
8

Similar Publications

The anatomical, histological, and histochemical characteristics of the foregut (FG), midgut (MG), and hindgut (HG), as well as their alterations during the ovarian cycle in female prawns, Macrobrachium rosenbergii, were investigated. The esophagus (ESO), cardia (CD), and pylorus (PY) are the main components of the FG. An epithelium (Ep) with thick cuticle (Cu) layers lining the ESO, and the ESO is encircled by the ESO glands.

View Article and Find Full Text PDF

Cyclin-dependent protein kinases and cell cycle regulation in biology and disease.

Signal Transduct Target Ther

January 2025

Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy.

Cyclin Dependent Kinases (CDKs) are closely connected to the regulation of cell cycle progression, having been first identified as the kinases able to drive cell division. In reality, the human genome contains 20 different CDKs, which can be divided in at least three different sub-family with different functions, mechanisms of regulation, expression patterns and subcellular localization. Most of these kinases play fundamental roles the normal physiology of eucaryotic cells; therefore, their deregulation is associated with the onset and/or progression of multiple human disease including but not limited to neoplastic and neurodegenerative conditions.

View Article and Find Full Text PDF

This is a randomized, double-blind, placebo-controlled phase 3 clinical trial (ClinicalTrials.gov, NCT04878016) conducted in 54 hospitals in China. Adults who were histologically diagnosed and never treated for extensive-stage small cell lung cancer (ES-SCLC) were enrolled.

View Article and Find Full Text PDF

Cell cycle dysregulation and the corresponding metabolic reprogramming play significant roles in tumor development and progression. CDK9, a kinase that regulates gene transcription and cell cycle, also induces oncogene transcription and abnormal cell cycle in AML cells. The function of CDK9 for gene regulation in AML cells requires further exploration.

View Article and Find Full Text PDF

Turning waste into wealth: Enzyme-activated DNA sensor based on reactant recycle for spatially selective imaging microRNA toward target cells.

Anal Chim Acta

February 2025

Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou, 310003, China. Electronic address:

Background: Amplified imaging of microRNA (miRNA) in cancer cells is essential for understanding of the underlying pathological process. Synthetic catalytic DNA circuits represent pivotal tools for miRNA imaging. However, most existing catalytic DNA circuits can not achieve the reactant recycling operation in cells and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!