Background: Porcine reproductive and respiratory syndrome virus (PRRSV) causes a loss of approximately US$ 70 million every year to the South Korean pork industry. There are two distinct genotypes: European (type 1) and North American (type 2). In South Korea, type 1 and type 2 PRRSV are widely distributed and have evolved continuously since the infection was first described. Here, we present two field cases of type 1 PRRSV infection with unusually severe pathogenicity.
Case Presentation: The first case farm was a two-site production system comprising farrow-to-grower and grower-to-finish units and was historically free from PRRSV infections. The PRRSV vaccine had not been used in both units. In October 2014, pigs in the grower-to-finish unit experienced severe respiratory distress with the mortality rate reaching to 22%. Despite antibiotic treatment, clinical signs were still noticed in most pigs. The second case farm was also a two-site production system, but had two separate farrow-to-grower units (unit A and unit B). Historically, type 1 PRRSV was continuously present in unit A, but unit B was free from PRRSV. Thus, all grower pigs of unit B were vaccinated before being moved to the grower-to-finish unit. In November 2014, severe respiratory distress was seen in pigs of the grower-to-finish unit. Significant respiratory distress was observed in only the grower herd moved from unit B, and the mortality of those pigs was ~50%. However, no disease was shown in the grower pigs from unit A.
Conclusions: To our knowledge, the present study is the first observation of the cases of infection by highly pathogenic type 1 PRRSV in South Korea. The Korean type 1 PRRSV strains have undergone unique evolutionary dynamics for the last decade in this country. Although there are known to be three clusters of Korean type 1 PRRSV, their pathogenicity could not be categorized owing to their high level of genetic diversity. Therefore, further studies are needed to demonstrate the novel classification of Korean type 1 PRRSV strains according to their virulence factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619543 | PMC |
http://dx.doi.org/10.1186/s12917-015-0584-5 | DOI Listing |
PLoS Pathog
January 2025
Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
The NLRP3 inflammasome is a fundamental component of the innate immune system, yet its excessive activation is intricately associated with viral pathogenesis. Porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), belonging to the family Arteriviridae, triggers dysregulated cytokine release and interstitial pneumonia, which can quickly escalate to acute respiratory distress and death. However, a mechanistic understanding of PRRSV-2 progression remains unclear.
View Article and Find Full Text PDFVet Rec
January 2025
Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.
Background: Diagnosis of porcine reproductive and respiratory syndrome virus (PRRSV) infections can be accomplished using various sample types and testing methods. The objective of this study was to evaluate the feasibility of using air emission samples to detect the onset of PRRSV type 2 infections in growing pigs.
Methods: Air emissions and oral fluid samples were collected from three grow-finish barns, stocked with PRRSV-negative pigs every 2 weeks for 14-20 weeks.
Vaccines (Basel)
January 2025
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
As an essential type of vaccine, live attenuated vaccines (LAVs) play a crucial role in animal disease prevention and control. Nevertheless, developing LAVs faces the challenge of balancing safety and efficacy. Understanding the mechanisms animal viruses use to antagonize host antiviral innate immunity may help to precisely regulate vaccine strains and maintain strong immunogenicity while reducing their pathogenicity.
View Article and Find Full Text PDFmSphere
January 2025
Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.
Existing genetic classification systems for porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), such as restriction fragment length polymorphisms and sub-lineages, are unreliable indicators of close genetic relatedness or lack sufficient resolution for epidemiological monitoring routinely conducted by veterinarians. Here, we outline a fine-scale classification system for PRRSV-2 genetic variants in the United States. Based on >25,000 U.
View Article and Find Full Text PDFVet Res
January 2025
Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses in the swine industry. However, the molecular mechanisms behind the common and cell type-specific systemic responses during PRRS virus (PRRSV) infection are not well understood. In this study, we collected viremia data, antibody levels, and whole-blood RNA-seq data obtained from eight PRRSV-infected piglets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!