Background: Moraxella catarrhalis is an important pathogen that often causes otitis media in children, a disease that is not currently vaccine preventable. Asymptomatic colonisation of the human upper respiratory tract is common and lack of clearance by the immune system is likely due to the emergence of seroresistant genetic lineages. No active bacteriophages or prophages have been described in this species. This study was undertaken to identify and categorise prophages in M. catarrhalis, their genetic diversity and the relationship of such diversity with the host-species phylogeny.

Results: This study presents a comparative analysis of 32 putative prophages identified in 95 phylogenetically variable, newly sequenced M. catarrhalis genomes. The prophages were genotypically classified into four diverse clades. The genetic synteny of each clade is similar to the group 1 phage family Siphoviridae, however, they form genotypic clusters that are distinct from other members of this family. No core genetic sequences exist across the 32 prophages despite clades 2, 3, and 4 sharing the most sequence identity. The analysis of non-structural prophage genes (coding the integrase, and terminase), and portal gene showed that the respective genes were identical for clades 2, 3, and 4, but unique for clade 1. Empirical analysis calculated that these genes are unexpectedly hyperconserved, under purifying selection, suggesting a tightly regulated functional role. As such, it is improbable that the prophages are decaying remnants but stable components of a fluctuating, flexible and unpredictable system ultimately maintained by functional constraints on non-structural and packaging genes. Additionally, the plate encoding genes were well conserved across all four prophage clades, and the tail fibre genes, commonly responsible for receptor recognition, were clustered into three major groups distributed across the prophage clades. A pan-genome of 283,622 bp was identified, and the prophages were mapped onto the diverse M. catarrhalis multi-locus sequence type (MLST) backbone.

Conclusion: This study has provided the first evidence of putatively mobile prophages in M. catarrhalis, identifying a diverse and fluctuating system dependent on the hyperconservation of a few key, non-structural genes. Some prophages harbour virulence-related genes, and potentially influence the physiology and virulence of M. catarrhalis. Importantly our data will provide supporting information on the identification of novel prophages in other species by adding greater weight to the identification of non-structural genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619438PMC
http://dx.doi.org/10.1186/s12864-015-2104-1DOI Listing

Publication Analysis

Top Keywords

non-structural genes
12
prophages
11
genes
10
moraxella catarrhalis
8
prophages catarrhalis
8
prophage clades
8
catarrhalis
7
non-structural
5
clades
5
novel moraxella
4

Similar Publications

The role of GTF2I (General Transcription Factor2I) alteration has already been reported in thymic cancer as a valuable biomarker. However, the association of GTF2I mutation with renal cancer for prognosis of immunotherapy is not yet examined. The biologic and oncologic significance of GTF2I in renal cancer was examined at multiomics level such as mutation, copy number alteration, structural variants.

View Article and Find Full Text PDF

Xylem plasticity is important for trees to coordinate hydraulic efficiency and safety under changing soil water availability. However, the physiological and transcriptional regulations of cambium on xylem plasticity are not well understood. In this study, mulberry saplings of drought-resistant Wubu and drought-susceptible Zhongshen1 were subjected to moderate or severe drought stresses for 21 days and subsequently rewatered for 12 days.

View Article and Find Full Text PDF

Unlabelled: Classical swine fever virus (CSFV) is a member of the genus within the family . The enveloped particles contain a plus-stranded RNA genome encoding a single large polyprotein. The processing of this polyprotein undergoes dynamic changes throughout the infection cycle.

View Article and Find Full Text PDF

Background: Gleditsia sinensis Lam. (Fabaceae) is a medicinal legume characterized by its spines and pods, which are rich in saponins, polysaccharides, and various specialized metabolites with potential medicinal and industrial applications. The low fruit set rate in artificially cultivated economic forests significantly impedes its development and utilization.

View Article and Find Full Text PDF

Novel replication-competent reporter-expressing Rift Valley fever viruses for molecular studies.

J Virol

December 2024

Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain.

Unlabelled: Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic disease that causes severe disease in both domestic and wild ungulates and humans, making it a significant threat to livestock and public health. The RVFV genome consists of three single-stranded, negative-sense RNA segments differing in size: small (S), medium (M), and large (L). Segment S encodes the virus nucleoprotein N and the virulence-associated factor non-structural (NSs) protein in opposite orientations, separated by an intergenic region (IGR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!