Physiological and transcriptional regulation in poplar roots and leaves during acclimation to high temperature and drought.

Physiol Plant

College of Life Sciences and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, P. R. China.

Published: May 2016

To elucidate the physiological and transcriptional regulatory mechanisms that underlie the responses of poplars to high temperature (HT) and/or drought in woody plants, we exposed Populus alba × Populus tremula var. glandulosa saplings to ambient temperature (AT) or HT under 80 or 40% field capacities (FC), or no watering. HT increased the foliar total carbon (C) concentrations, and foliar δ(13) C and δ(18) O. HT triggered heat stress signaling via increasing levels of abscisic acid (ABA) and indole-3-acetic acid (IAA) in poplar roots and leaves. After perception of HT, poplars initiated osmotic adjustment by increasing foliar sucrose and root galactose levels. In agreement with the HT-induced heat stress and the changes in the levels of ABA and carbohydrates, we detected increased transcript levels of HSP18 and HSP21, as well as NCED3 in the roots and leaves, and the sugar transporter gene STP14 in the roots. Compared with AT, drought induced greater enhancement of foliar δ(13) C and δ(18) O in poplars at HT. Similarly, drought caused greater stimulation of the ABA and foliar glucose levels in poplars at HT than at AT. Correspondingly, desiccation led to greater increases in the mRNA levels of HSP18, HSP21, NCED3, STP14 and INT1 in poplar roots at HT than at AT. These results suggest that HT has detrimental effects on physiological processes and it induces the transcriptional regulation of key genes involved in heat stress responses, ABA biosynthesis and sugar transport and HT can cause greater changes in drought-induced physiological and transcriptional responses in poplar roots and leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.12400DOI Listing

Publication Analysis

Top Keywords

poplar roots
16
roots leaves
16
physiological transcriptional
12
heat stress
12
transcriptional regulation
8
high temperature
8
foliar δ13
8
δ13 δ18
8
levels hsp18
8
hsp18 hsp21
8

Similar Publications

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown.

View Article and Find Full Text PDF

Comparative Study on Growth Characteristics and Early Selection Efficiency of Hybrid Offspring of 'DD-109' and in Liaoning, China.

Plants (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.

Poplar is an important tree species for timber supply and ecological protection in northern China. Cultivating and selecting high-quality varieties and germplasm resources suitable for cultivation are key factors in enhancing the quality and productivity of poplar plantations in the arid and semi-arid northern regions with shorter growing seasons. This study conducted a field cultivation experiment on 10 progeny clones from the direct cross (D × M) of imported 'DD-109' with and 7 progeny clones from the reciprocal cross (M × D) using one-year-old rooted cuttings planted at a 4 m × 8 m spacing.

View Article and Find Full Text PDF

In Vitro Rooting of Poplar: Effects and Metabolism of Dichlorprop Auxin Ester Prodrugs.

Plants (Basel)

January 2025

Laboratory for Applied In Vitro Plant Biotechnology, Ghent University, 9000 Ghent, Belgium.

Efficient adventitious root formation is essential in micropropagation. Auxin prodrugs, inactive precursors that convert into active auxins within the plant, offer potentially improved rooting control and reduced phytotoxicity. This study investigated the efficacy of dichlorprop ester (DCPE), commercialized as Corasil and Clemensgros (originally intended to increase grapefruit size), in promoting in vitro root initiation in the model plant × , compared to its hydrolyzed form DCP and the related compound C77.

View Article and Find Full Text PDF

Physiological and transcriptome analysis of sex-specific responses to cadmium stress in poplars.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:

Soil cadmium (Cd) pollution is a serious ecological problem worldwide. Understanding Cd-detoxification mechanisms in woody plants will help to evaluate their tolerance ability and phytoremediation potential to Cd-polluted soils. This study investigated the growth, physiochemistry, Cd distribution, and transcriptome sequencing of male and female poplars under three Cd levels (0, 50, and 100 mg·kg).

View Article and Find Full Text PDF

Poplar transformation with variable explant sources to maximize transformation efficiency.

Sci Rep

January 2025

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

For decades, Agrobacterium tumefaciens-mediated plant transformation has played an integral role in advancing fundamental and applied plant biology. The recent omnipresent emergence of synthetic biology, which relies on plant transformation to manipulate plant DNA and gene expression for novel product biosynthesis, has further propelled basic as well as applied interests in plant transformation technologies. The strong demand for a faster design-build-test-learn cycle, the essence of synthetic biology, is, however, still ill-matched with the long-standing issues of high tissue culture recalcitrance and low transformation efficiency of a wide range of plant species especially food, fiber and energy crops.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!