A series of cross-conjugated compounds based on an (E)-4,4'-(hexa-3-en-1,5-diyne-3,4-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) skeleton (1-6) have been synthesized. The linear optical absorption properties can be tuned by modification of the substituents at the 1 and 5 positions of the hexa-3-en-1,5-diynyl backbone (1: Si(CH(CH3)2)3, 2: C6H4C≡CSi(CH3)3, 3: C6H4COOCH3, 4: C6H4CF3, 5: C6H4C≡N, 6: C6H4C≡CC5H4N), although attempts to introduce electron-donating (C6H4CH3, C6H4OCH3, C6H4Si(CH3)3) substituents at these positions were hampered by the ensuing decreased stability of the compounds. Spectroelectrochemical investigations of selected examples, supported by DFT-based computational studies, have shown that one- and two-electron oxidation of the 1,2-bis(triarylamine)ethene fragment also results in electronic changes to the perpendicular π-system in the hexa-3-en-1,5-diynyl branch of the molecule. These properties suggest that (E)-hexa-3-en-1,5-diynyl-based compounds could have applications in molecular sensing and molecular electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.5b02240DOI Listing

Publication Analysis

Top Keywords

spectroelectrochemical investigations
8
substituents positions
8
cross-conjugated systems
4
systems based
4
based e-hexa-3-en-15-diyne-34-diyl
4
e-hexa-3-en-15-diyne-34-diyl skeleton
4
skeleton spectroscopic
4
spectroscopic spectroelectrochemical
4
investigations series
4
series cross-conjugated
4

Similar Publications

The introduction of 4,5-dihydroazuleno[2,1,8-ija]azulene as a central core between two 1,4-dithiafulvene (DTF) units provides a novel class of extended tetrathiafulvalene (TTF) electron donors. Herein we present the synthesis of such compounds with the azulenoazulene further expanded by annulation to benzene, naphthalene, or thiophene rings. Moreover, unsymmetrical donor-acceptor chromophores with one DTF and one carbonyl at the central core are presented.

View Article and Find Full Text PDF

A group of bithiophenyl compounds comprising the cyanoacrylate moiety were designed and successfully synthesized. The optical, (spectro)electrochemical, and aggregation-induced emission properties were studied. DFT calculations were used to explain the reaction's regioselectivity and to determine the molecules' energy parameters (i.

View Article and Find Full Text PDF

In this work, we evaluated two closo-borate salts (LiBH and LiBF) in propylene carbonate from theoretical and experimental perspectives to understand how the coordination environment influences their spectroscopic and electrochemical properties. The coordination environments of the closo-borate salts were modeled via density functional theory (DFT) and molecular dynamics (MD). Vibrational spectra calculated from the predicted coordination environments are in agreement with experimentally measured steady-state FTIR data.

View Article and Find Full Text PDF

The development of efficient and stable electrocatalysts for water oxidation in acidic media is vital for the commercialization of the proton exchange membrane electrolyzers. In this work, we successfully construct Ru-O-Ir atomic interfaces for acidic oxygen evolution reaction (OER). The catalysts achieve overpotentials as low as 167, 300, and 390 mV at 10, 500, and 1500 mA cm in 0.

View Article and Find Full Text PDF

Enhancing Low-Concentration Electroreduction of NO to NH via Potential-Controlled Active Site-Intermediate Interactions.

Angew Chem Int Ed Engl

November 2024

Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, 410083, Changsha, Hunan, P. R. China.

Electronic defect states in catalysts are recognized as highly effective active sites for enhancing the low-concentration electroreduction of NO to NH (NORR). Their structures dynamically evolve with applied electrode potentials, allowing the active sites to adjust interactions with intermediates, thereby improving electrocatalytic performance. However, the dynamic changes in these interactions under applied potentials remain poorly understood, hindering the design of more diverse electrocatalytic systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!