Rhythmic Inhibition Allows Neural Networks to Search for Maximally Consistent States.

Neural Comput

Institute of Neuroinformatics, University of Zurich, and ETH Zurich, Zurich CH-8057, Switzerland

Published: December 2015

Gamma-band rhythmic inhibition is a ubiquitous phenomenon in neural circuits, yet its computational role remains elusive. We show that a model of gamma-band rhythmic inhibition allows networks of coupled cortical circuit motifs to search for network configurations that best reconcile external inputs with an internal consistency model encoded in the network connectivity. We show that Hebbian plasticity allows the networks to learn the consistency model by example. The search dynamics driven by rhythmic inhibition enable the described networks to solve difficult constraint satisfaction problems without making assumptions about the form of stochastic fluctuations in the network. We show that the search dynamics are well approximated by a stochastic sampling process. We use the described networks to reproduce perceptual multistability phenomena with switching times that are a good match to experimental data and show that they provide a general neural framework that can be used to model other perceptual inference phenomena.

Download full-text PDF

Source
http://dx.doi.org/10.1162/NECO_a_00785DOI Listing

Publication Analysis

Top Keywords

rhythmic inhibition
16
inhibition allows
8
gamma-band rhythmic
8
allows networks
8
consistency model
8
search dynamics
8
described networks
8
networks
5
rhythmic
4
allows neural
4

Similar Publications

Spatiotemporal network dynamics and structural correlates in the human cerebral cortex in vitro.

Prog Neurobiol

January 2025

Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Electronic address:

Elucidating human cerebral cortex function is essential for understanding the physiological basis of both healthy and pathological brain states. We obtained extracellular local field potential recordings from cortical slices of neocortical tissue from refractory epilepsy patients. Multi-electrode recordings were combined with histological information, providing a two-dimensional spatiotemporal characterization of human cortical dynamics in control conditions and following modulation of the excitation/inhibition balance.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) has been used for many years to study the pathophysiology of amyotrophic lateral sclerosis (ALS). Based on single- or dual-pulse TMS and EMG and/or single motor unit (MU) recordings, many groups have described a loss of central inhibition as an early marker of ALS dysfunction, reflecting a state of cortical 'hyperexcitability'. This conclusion is not without its detractors, however, leading us to reexamine this issue using 4-pulse TMS, shown previously to be more effective for testing central motor pathway functional integrity.

View Article and Find Full Text PDF

Metabolic activities are selective modulators for individual segmentation clock processes.

Nat Commun

January 2025

European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain.

Numerous cellular and molecular processes during embryonic development prompt the fundamental question of how their tempos are coordinated and whether a common global modulator exists. While the segmentation clock tempo scales with the kinetics of gene expression and degradation processes of the core clock gene Hes7 across mammals, the coordination of these processes remains unclear. This study examines whether metabolic activities serve as a global modulator for the segmentation clock, finding them to be selective instead.

View Article and Find Full Text PDF

Rhythmic motor behaviors are generated by neural networks termed central pattern generators (CPGs). Although locomotor CPGs have been extensively characterized, it remains unknown how the neuronal populations composing them interact to generate adaptive rhythms. We explored the non-linear cooperation dynamics among the three main populations of ipsilaterally projecting spinal CPG neurons - V1, V2a, V2b neurons - in scratch reflex rhythmogenesis.

View Article and Find Full Text PDF

Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation.

Pigment Cell Melanoma Res

January 2025

Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.

Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!