Cytokeratin 5-Positive Cells Represent a Therapy Resistant subpopulation in Epithelial Ovarian Cancer.

Int J Gynecol Cancer

*Departments of Obstetrics and Gynecology and †Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO; and ‡Texas Oncology, Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX.

Published: November 2015

AI Article Synopsis

  • Cytokeratin 5 (CK5) is found in about 39.3% of epithelial ovarian cancers and is linked to increased resistance to cisplatin chemotherapy.
  • The study analyzed CK5 expression in ovarian cancer tissue samples and cell lines, revealing that CK5(+) cells proliferate slower and showed a rise in prevalence after cisplatin treatment.
  • CK5(+) cells also exhibited more resistance to chemotherapy-induced cell death, suggesting the need for potential combination therapies targeting this cell population.

Article Abstract

Objective: Cytokeratin 5 (CK5) is an epithelial cell marker implicated in stem and progenitor cell activity in glandular reproductive tissues and endocrine and chemotherapy resistance in estrogen receptor (ER)(+) breast cancer. The goal of this study was to determine the prevalence of CK5 expression in ovarian cancer and the response of CK5(+) cell populations to cisplatin therapy.

Materials And Methods: Cytokeratin 5 expression was evaluated in 2 ovarian tissue microarrays, representing 137 neoplasms, and 6 ovarian cancer cell lines. Cell lines were treated with IC(50) (half-maximal inhibitory concentration) cisplatin, and the prevalence of CK5(+) cells pretreatment and posttreatment was determined. Proliferation of CK5(+) versus CK5(-) cell populations was determined using 5-bromo-2'-deoxyuridine incorporation. Chemotherapy-induced apoptosis in CK5(+) versus CK5(-) cells was measured using immunohistochemical staining for cleaved caspase-3.

Results: Cytokeratin 5 was expressed in 39.3% (42 of 107) of epithelial ovarian cancers with a range of 1% to 80% positive cells. Serous and endometrioid histologic subtypes had the highest percentage of CK5(+) specimens. Cytokeratin 5 expression correlated with ER positivity (38 of 42 CK5(+) tumors were also ER(+)). Cytokeratin 5 was expressed in 5 of 6 overall and 4 of 4 ER(+) epithelial ovarian cancer cell lines ranging from 2.4% to 52.7% positive cells. Cytokeratin 5(+) compared with CK5(-) cells were slower proliferating. The prevalence of CK5(+) cells increased after 48-hour cisplatin treatment in 4 of 5 cell lines tested. Cytokeratin 5(+) ovarian cancer cells compared with CK5(-) ovarian cancer cells were more resistant to cisplatin-induced apoptosis.

Conclusions: Cytokeratin 5 is expressed in a significant proportion of epithelial ovarian cancers and represents a slower proliferating chemoresistant subpopulation that may warrant cotargeting in combination therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4635519PMC
http://dx.doi.org/10.1097/IGC.0000000000000553DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
24
epithelial ovarian
16
cell lines
16
cytokeratin expressed
12
cytokeratin
9
cells
9
ovarian
9
cell
8
cell populations
8
cytokeratin expression
8

Similar Publications

With evidence that salpingectomy is effective in preventing high grade serous carcinoma, it is time to consider offering this procedure to people at higher-than-average lifetime risk for ovarian cancer, despite not having a pathogenic genetic variant that increases risk for ovarian cancer. This targeted approach has potential to be effective at reducing ovarian cancer incidence, and unlike opportunistic salpingectomy is focused on people with an increased lifetime risk of ovarian cancer. However, the acceptability of this approach within the population of potential patients remains unknown.

View Article and Find Full Text PDF

The aim of this study was to present a nationwide survey on the specialist's attitudes towards stereotactic body radiotherapy (SBRT) combined with poly (ADP-ribose) polymerase inhibitors (PARPi) with oligometastatic/oligoprogressive/oligorecurrent ovarian cancer (oMPR-OC) patients. The 19-item questionnaire was developed by specialists and distributed online. Replies were stratified by categories and analyzed using descriptive statistics.

View Article and Find Full Text PDF

Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

View Article and Find Full Text PDF

Introduction: Ovarian Cancer (OC) was known for its high mortality rate among gynecological malignancies, often resulting in a poor prognosis. This study sought to identify prognostic necroptosis-related long non-coding RNAs (lncRNAs) (NRlncRNAs) with prognostic potential and to construct a reliable risk prediction model for OC patients.

Method: The transcriptome and clinic data were sourced from TCGA and GTEx databases.

View Article and Find Full Text PDF

We report a case showing that lorlatinib is effective in treating EML4-ALK-positive low-grade serous ovarian cancer (LGSO) with intracranial metastasis. This may be the first clinical evidence of LGSO benefit from ALK inhibitors, to provide evidence for the use of ALK inhibitors in more ovarian cancer patients with EML4-ALK fusion and promoting new ideas for the study of EML4-ALK targets in ovarian cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!