Mechanical ventilation (MV) is an important aspect in the intraoperative and early postoperative management of lung transplant (LTx)-recipients. There are no randomized-controlled trials of LTx-recipient MV strategies; however there are LTx center experiences and international survey studies reported. The main early complication of LTx is primary graft dysfunction (PGD), which is similar to the adult respiratory distress syndrome (ARDS). We aim to summarize information pertinent to LTx-MV, as well as PGD, ARDS, and intraoperative MV and to synthesize these available data into recommendations. Based on the available evidence, we recommend lung-protective MV with low-tidal-volumes (≤6 mL/kg predicted body weight [PBW]) and positive end-expiratory pressure for the LTx-recipient. In our opinion, the MV strategy should be based on donor characteristics (donor PBW as a parameter of actual allograft size), rather than based on recipient characteristics; however this donor-characteristics-based protective MV is based on indirect evidence and requires validation in prospective clinical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610154PMC
http://dx.doi.org/10.1007/s13665-015-0114-8DOI Listing

Publication Analysis

Top Keywords

mechanical ventilation
8
lung transplant
8
ventilation lung
4
transplant recipient
4
recipient mechanical
4
ventilation aspect
4
aspect intraoperative
4
intraoperative early
4
early postoperative
4
postoperative management
4

Similar Publications

Background: Albumin, a vital component in regulating human blood oncotic pressure, plays an important role in the prediction of prognosis in pediatric patients.Previous research identified significant differences in serum albumin levels of healthy and critically ill children.

Methods: The present study aims to investigate the correlation between albumin levels measured during pediatric intensive care unit(PICU) admission and clinical outcomes.

View Article and Find Full Text PDF

Gas transport mechanisms during high-frequency ventilation.

Respir Res

December 2024

Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC, Australia.

By virtue of applying small tidal volumes, high-frequency ventilation is advocated as a method of minimizing ventilator-induced lung injury. Lung protective benefits are established in infants, but not in other patient cohorts. Efforts to improve and extend the lung protection potential should consider how fundamental modes of gas transport can be exploited to minimize harmful tidal volumes while maintaining or improving ventilation.

View Article and Find Full Text PDF

Background: Invasive fungal infections have been reported as complications with significant mortality and morbidity in patients hospitalized with COVID-19. This study aimed to evaluate the clinical characteristics and outcomes of candidaemia patients with COVID-19 and to investigate the association between COVID-19 and mortality in candidaemia patients.

Methods: This retrospective study included candidaemia patients aged 18 years or older admitted to four university-affiliated tertiary hospitals in South Korea between January 1, 2020, and December 31, 2022.

View Article and Find Full Text PDF

Epidemiology of late-onset sepsis in Malaysian neonatal intensive care units, 2015-2020.

Malays J Pathol

December 2024

Tengku Ampuan Rahimah Hospital, Department of Paediatrics, Ministry of Health, Klang, Selangor, Malaysia.

Introduction: To determine the epidemiology of blood culture-positive late-onset sepsis (LOS, >72 hours of age) in 44 Malaysian neonatal intensive care units (NICUs).

Materials And Methods: Study Design: Multicentre retrospective observational study using data from the Malaysian National Neonatal Registry.

Participants: 739486 neonates (birthweight ≥500g, gestation ≥22 weeks) born and admitted in 2015-2020.

View Article and Find Full Text PDF

Feasibility and safety of ultra-low volume ventilation (≤ 3 ml/kg) combined with extra corporeal carbon dioxide removal (ECCOR) in acute respiratory failure patients.

Crit Care

December 2024

Department of Anesthesia and Intensive Care Unit, Regional University Hospital of Montpellier, St-Eloi Hospital, PhyMedExp, INSERM U1046, CNRS UMR, University of Montpellier, 9214, Montpellier Cedex 5, France.

Background: Ultra-protective ventilation is the combination of low airway pressures and tidal volume (Vt) combined with extra corporeal carbon dioxide removal (ECCOR). A recent large study showed no benefit of ultra-protective ventilation compared to standard ventilation in ARDS (Acute Respiratory Distress Syndrome) patients. However, the reduction in Vt failed to achieve the objective of less than or equal to 3 ml/kg predicted body weight (PBW).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!