Preimplantation genetic diagnosis (PGD) is well established method for treatment of genetic problems associated with infertility. Moreover, PGD with next-generation sequencing (NGS) provide new possibilities for diagnosis and new parameters for evaluation in, for example, aneuploidy screening. The aim of the study was to report the successful pregnancy outcome following PGD with NGS as the method for 24 chromosome aneuploidy screening in the case of Robertsonian translocation. Day 3 embryos screening for chromosomal aneuploidy was performed in two consecutive in vitro fertilization (IVF) cycles, first with fluorescent in situ hybridization (FISH), and then with NGS-based protocol. In each IVF attempt, three embryos were biopsied. Short duration of procedures enabled fresh embryo transfer without the need for vitrification. First IVF cycle with the embryo selected using PGD analysis with the FISH method ended with pregnancy loss in week 8. The second attempt with NGS-based aneuploidy screening led to exclusion of the following two embryos: one embryo with 22 monosomy and one with multiple aneuploidies. The transfer of the only euploid blastocyst resulted in the successful pregnancy outcome. The identification of the euploid embryo based on the NGS application was the first successful clinical application of NGS-based PGD in the case of the Robertsonian translocation carrier couple.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603858PMC
http://dx.doi.org/10.1055/s-0035-1558402DOI Listing

Publication Analysis

Top Keywords

robertsonian translocation
12
aneuploidy screening
12
translocation carrier
8
preimplantation genetic
8
genetic diagnosis
8
successful pregnancy
8
pregnancy outcome
8
case robertsonian
8
pgd
5
healthy baby
4

Similar Publications

Introduction: This study investigated the impact of the carrier on transferable blastocyst rate and live birth outcomes in couples with structural chromosomal abnormalities.

Methods: Couples were grouped into reciprocal translocation, Robertsonian translocation, or inversions groups, and clinical data were retrospectively analyzed. Preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR) was conducted, and pregnancy outcomes were compared.

View Article and Find Full Text PDF

GBS read coverage analysis identified a Robertsonian chromosome from two Thinopyrum subgenomes in wheat, conferring leaf and stripe rust resistance, drought tolerance, and maintaining yield stability. Agropyron glael (GLAEL), a Thinopyrum intermedium × Th. ponticum hybrid, serves as a valuable genetic resource for wheat improvement.

View Article and Find Full Text PDF

Recurrent pregnancy loss (RPL) is a multifactorial condition, encompassing genetic, anatomical, immunological, endocrine, as well as infectious and environmental factors; however, the etiology remains elusive in a substantial number of cases. Genetic factors linked to RPL include parental karyotype abnormalities (e.g.

View Article and Find Full Text PDF

Parental balanced translocation carriers do not have decreased usable blastulation rates or live birth rates compared with infertile controls.

Fertil Steril

November 2024

Instituto Valenciano de Infertilidad and Reproductive Medicine Associates Global Research Alliance, Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey.

Article Synopsis
  • The study aimed to compare the number of usable blastocysts between balanced translocation carriers and infertile controls undergoing IVF.
  • There were no significant differences in outcomes like usable blastulation rates, number of oocytes retrieved, or live birth rates between the two groups.
  • The primary finding showed that while blastulation rates were slightly lower for translocation carriers (59.5% vs. 62.1%), the rates of usable blastocysts remained similar at 47.2% for carriers and 50.0% for controls.
View Article and Find Full Text PDF

Resolution of ring chromosomes, Robertsonian translocations, and complex structural variants from long-read sequencing and telomere-to-telomere assembly.

Am J Hum Genet

December 2024

Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:

Article Synopsis
  • Researchers tackled the challenge of studying structural variants (SVs) in repetitive genomic regions using advanced technologies like long-read sequencing and the gapless T2T assembly.
  • They successfully analyzed 13 complex cases, resolving 10 by identifying specific genomic breakpoints and structures that were previously difficult to sequence, including Robertsonian translocations and ring chromosomes.
  • The study highlighted new mechanisms for SV formation and provided insights into how these genome variations affect gene expression and potential implications for disease diagnosis and genome biology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!