Smooth muscle cell (SMC) invasion into plaques and subsequent proliferation is a major factor in the progression of atherosclerosis. During disease progression, SMCs experience major changes in their microenvironment, such as what integrin-binding sites are exposed, the portfolio of soluble factors available, and the elasticity and modulus of the surrounding vessel wall. We have developed a hydrogel biomaterial platform to examine the combined effect of these changes on SMC phenotype. We were particularly interested in how the chemical microenvironment affected the ability of SMCs to sense and respond to modulus. To our surprise, we observed that integrin binding and soluble factors are major drivers of several critical SMC behaviors, such as motility, proliferation, invasion, and differentiation marker expression, and these factors modulated the effect of stiffness on proliferation and migration. Overall, modulus only modestly affected behaviors other than proliferation, relative to integrin binding and soluble factors. Surprisingly, pathological behaviors (proliferation, motility) are not inversely related to SMC marker expression, in direct conflict with previous studies on substrates coupled with single extracellular matrix (ECM) proteins. A high-throughput bead-based ELISA approach and inhibitor studies revealed that differentiation marker expression is mediated chiefly focal adhesion kinase (FAK) signaling, and we propose that integrin binding and FAK drive the transition from a migratory to a proliferative phenotype. We emphasize the importance of increasing the complexity of testing platforms to capture these subtleties in cell phenotypes and signaling, in order to better recapitulate important features of disease and elucidate potential context-dependent therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610395 | PMC |
http://dx.doi.org/10.1007/s12195-015-0397-4 | DOI Listing |
Pharmaceutics
November 2024
Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha P.O. Box 2713, Qatar.
Ketamine HCl, an FDA-approved therapeutic, is administered through various routes, including intranasal delivery. Administering an adequate therapeutic dose of intranasal ketamine HCl is challenging due to the limited volume that can be delivered intranasally given the current commercially available concentrations. This study investigates solubilizing strategies to enhance the aqueous solubility of ketamine HCl for intranasal administration.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands.
The introduction of biological therapies has revolutionized inflammatory bowel disease (IBD) management. A critical consideration in developing these therapies is ensuring adequate drug concentrations at the site of action. While blood-based biomarkers have shown limited utility in optimizing treatment (except for TNF-alpha inhibitors and thiopurines), tissue drug concentrations may offer valuable insights.
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
Diesel spills and nuclides pollution cause global ecosystem and human health problems. The remediation of contaminated soil using woody plants has received considerable attention. Differences in plant species and sex can lead to differences in tolerance to various stressors.
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Forestry, Northeast Forestry University, Harbin 150040, China.
A. Boriss., recognized for its significant medicinal potential, is increasingly threatened by overharvesting in wild habitats.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China.
Irrigation practice, tillage method, and nitrogen (N) management are the three most important agronomic measures for wheat ( L.) production, but the combined effects on grain yield and wheat physiological characteristics are still poorly understood. We conducted a three-year split-split field experiment at the junction of the Loess Plateau and Huang-Huai-Hai Plain in China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!