Background: Chlamydia pneumoniae is a common human pathogen that is associated with upper and lower respiratory tract infections. It has also been suggested that C. pneumoniae infection can trigger or promote a number of chronic inflammatory conditions, including asthma and atherosclerosis. Several strains of C. pneumoniae have been isolated from humans and animals, and sequence data demonstrates marked genetic conservation, leaving unanswered the question as to why chronic inflammatory conditions may occur following some respiratory-acquired infections.
Methods: C. pneumoniae strains AR39 and AO3 were used in vitro to infect murine bone marrow derived macrophages and L929 fibroblasts, or in vivo to infect C57BL/6 mice via the intranasal route.
Results: We undertook a comparative study of a respiratory isolate, AR39, and an atheroma isolate, AO3, to determine if bacterial growth and host responses to infection varied between these two strains. We observed differential growth depending on the host cell type and the growth temperature; however both strains were capable of forming plaques in vitro. The host response to the respiratory isolate was found to be more inflammatory both in vitro, in terms of inflammatory cytokine induction, and in vivo, as measured by clinical response and lung inflammatory markers using a mouse model of respiratory infection.
Conclusions: Our data demonstrates that a subset of C. pneumoniae strains is capable of evading host innate immune defenses during the acute respiratory infection. Further studies on the genetic basis for these differences on both the host and pathogen side could enhance our understanding how C. pneumoniae contributes to the development chronic inflammation at local and distant sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619265 | PMC |
http://dx.doi.org/10.1186/s12866-015-0569-3 | DOI Listing |
Int J Mol Sci
December 2024
Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
Vulnerable atherosclerotic plaques, especially hemorrhaged lesions, are the major cause of mortalities related to vascular pathologies. The early identification of vulnerable plaques helps to stratify patients at risk of developing acute vascular events. In this study, proteomics analyses of human carotid artery samples collected from patients with atheromatous plaques and complicated lesions, respectively, as well as from healthy controls were performed.
View Article and Find Full Text PDFJ Lipid Res
December 2024
Cardiovascular Biochemistry Group, Institut de Recerca Sant Pau, (IR Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Spain. Electronic address:
Approximately 20% of ischemic strokes are attributed to the presence of atherosclerosis. Lipoproteins play a crucial role in the development of atherosclerosis, with LDL promoting atherogenesis and HDL inhibiting it. Therefore, both their concentrations and their biological properties are decisive factors in atherosclerotic processes.
View Article and Find Full Text PDFAtherosclerosis
December 2024
Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
Background And Aims: Oral administration of acetic acid, a short-chain fatty acid, has been shown to efficiently reduce obesity and insulin resistance in both experimental animals and humans. The anti-atherosclerotic effect of acetate is expected owing to its anti-inflammatory and anti-oxidative stress characteristics; however, this remains to be fully understood.
Methods: For 12 weeks, apolipoprotein E-deficient mice were administered 0.
J Vis Exp
October 2024
Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance;
Recent research has advanced the understanding of atherosclerosis as a transmural chronic inflammatory disease involving all three layers of the arterial wall, including the intima plaque, the media, and the adventitia, which forms the outer connective tissue coat of arteries. Our recent studies have suggested that the adventitia is used by the peripheral nervous system as a conduit for reaching all tissue cells. We also found that the peripheral nervous system, that is, the sensory and sympathetic nervous system, undergoes major remodeling processes involving the neogenesis of axon networks adjacent to atherosclerotic plaques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!