Introduction: Measurement of energy expenditure (EE) is recommended to guide nutrition in critically ill patients. Availability of a gold standard indirect calorimetry is limited, and continuous measurement is unfeasible. Equations used to predict EE are inaccurate. The purpose of this study was to provide proof of concept that EE can be accurately assessed on the basis of ventilator-derived carbon dioxide production (VCO2) and to determine whether this method is more accurate than frequently used predictive equations.

Methods: In 84 mechanically ventilated critically ill patients, we performed 24-h indirect calorimetry to obtain a gold standard EE. Simultaneously, we collected 24-h ventilator-derived VCO2, extracted the respiratory quotient of the administered nutrition, and calculated EE with a rewritten Weir formula. Bias, precision, and accuracy and inaccuracy rates were determined and compared with four predictive equations: the Harris-Benedict, Faisy, and Penn State University equations and the European Society for Clinical Nutrition and Metabolism (ESPEN) guideline equation of 25 kcal/kg/day.

Results: Mean 24-h indirect calorimetry EE was 1823 ± 408 kcal. EE from ventilator-derived VCO2 was accurate (bias +141 ± 153 kcal/24 h; 7.7 % of gold standard) and more precise than the predictive equations (limits of agreement -166 to +447 kcal/24 h). The 10 % and 15 % accuracy rates were 61 % and 76 %, respectively, which were significantly higher than those of the Harris-Benedict, Faisy, and ESPEN guideline equations. Large errors of more than 30 % inaccuracy did not occur with EE derived from ventilator-derived VCO2. This 30 % inaccuracy rate was significantly lower than that of the predictive equations.

Conclusions: In critically ill mechanically ventilated patients, assessment of EE based on ventilator-derived VCO2 is accurate and more precise than frequently used predictive equations. It allows for continuous monitoring and is the best alternative to indirect calorimetry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619027PMC
http://dx.doi.org/10.1186/s13054-015-1087-2DOI Listing

Publication Analysis

Top Keywords

critically ill
16
indirect calorimetry
16
ventilator-derived vco2
16
ill patients
12
gold standard
12
predictive equations
12
ventilator-derived carbon
8
carbon dioxide
8
dioxide production
8
energy expenditure
8

Similar Publications

Severity of metabolic derangement predicts survival after out-of-hospital cardiac arrest and the likelihood of benefiting from extracorporeal life support.

Emergencias

December 2024

Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seúl, República de Corea. Department of Digital Health, SAIHST, Sungkyunkwan University, Seúl, República de Corea.

Objective: To develop a Metabolic Derangement Score (MDS) based on parameters available after initial testing and assess the score's ability to predict survival after out-of hospital cardiac arrest (OHCA) and the likely usefulness of extracorporeal life support (ECLS).

Methods: A total of 5100 cases in the Korean Cardiac Arrest Research Consortium registry were included. Patients' mean age was 67 years, and 69% were men.

View Article and Find Full Text PDF

Oxaliplatin (OXA), a platinum-based chemotherapeutic agent, remains a mainstay in first-line treatments for advanced colorectal cancer (CRC). However, the eventual development of OXA resistance represents a significant clinical challenge. In the present study, we demonstrate that the aldo-keto reductase 1C1 (AKR1C1) is overexpressed in CRC cells upon acquisition of OXA resistance, evident in OXA-resistant CRC cell lines.

View Article and Find Full Text PDF

Aim: To assess the clinical outcomes of patients with out-of-hospital cardiac arrest attended by prehospital critical care teams compared to non-critical care teams.

Methods: This review was prospectively registered with PROSPERO and the eligibility criteria followed a PICOST framework for ILCOR systematic reviews. Prehospital critical care was defined as any provider with enhanced clinical competencies beyond standard advanced life support algorithms and dedicated dispatch to critically ill patients.

View Article and Find Full Text PDF

Background: Three-dimensional rotational angiography (3DRA) is a promising advancement to guide cardiac catheterizations. It is used with restraint in critically ill infants with congenital heart disease (CHD) due to the lack of research conducted within this patient group.

Methods: Data of all infants with CHD and a body weight <5 kg who underwent cardiac catheterization with the use of 3DRA between November 2011 and April 2021 were retrospectively analyzed.

View Article and Find Full Text PDF

[Anticoagulation effects of nafamostat mesylate in sustained low-efficiency dialysis and its relevant factors].

Zhonghua Yi Xue Za Zhi

January 2025

Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney, Shanghai200032, China.

To investigate anticoagulation effects of nafamostat mesylate(NM) in sustained low-efficiency dialysis (SLED) and its relevant factors. Critically ill patients with kidney disease who were admitted to Zhongshan Hospital Affiliated to Fudan University and underwent SLED treatment from May to August 2024 were retrospectively included. Baseline clinical data were collected, and the activated partial thromboplastin time (APTT) and activated clotting time (ACT) were measured at the arterial end, before the filter, and at the venous end two hours post-NM anticoagulation treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!