X-ray crystal structure analysis of the lithiated allylic α-sulfonyl carbanions [CH2 CHC(Me)SO2 Ph]Li⋅diglyme, [cC6 H8 SO2 tBu]Li⋅PMDETA and [cC7 H10 SO2 tBu]Li⋅PMDETA showed dimeric and monomeric CIPs, having nearly planar anionic C atoms, only OLi bonds, almost planar allylic units with strong CC bond length alternation and the s-trans conformation around C1C2. They adopt a C1S conformation, which is similar to the one generally found for alkyl and aryl substituted α-sulfonyl carbanions. Cryoscopy of [EtCHCHC(Et)SO2 tBu]Li in THF at 164 K revealed an equilibrium between monomers and dimers in a ratio of 83:17, which is similar to the one found by low temperature NMR spectroscopy. According to NMR spectroscopy the lone-pair orbital at C1 strongly interacts with the CC double bond. Low temperature (6) Li,(1) H NOE experiments of [EtCHCHC(Et)SO2 tBu]Li in THF point to an equilibrium between monomeric CIPs having only OLi bonds and CIPs having both OLi and C1Li bonds. Ab initio calculation of [MeCHCHC(Me)SO2 Me]Li⋅(Me2 O)2 gave three isomeric CIPs having the s-trans conformation and three isomeric CIPs having the s-cis conformation around the C1C2 bond. All s-trans isomers are more stable than the s-cis isomers. At all levels of theory the s-trans isomer having OLi and C1Li bonds is the most stable one followed by the isomer which has two OLi bonds. The allylic unit of the C,O,Li isomer shows strong bond length alternation and the C1 atom is in contrast to the O,Li isomer significantly pyramidalized. According to NBO analysis of the s-trans and s-cis isomers, the interaction of the lone pair at C1 with the π* orbital of the CC double bond is energetically much more favorable than that with the "empty" orbitals at the Li atom. The C1S and C1C2 conformations are determined by the stereoelectronic effects nC -σSR * interaction and allylic conjugation. (1) H DNMR spectroscopy of racemic [EtCHCHC(Et)SO2 tBu]Li, [iPrCHCHC(iPr)SO2 tBu]Li and [EtCHC(Me)C(Et)SO2 tBu]Li in [D8 ]THF gave estimated barriers of enantiomerization of ΔG(≠) =13.2 kcal mol(-1) (270 K), 14.2 kcal mol(-1) (291 K) and 14.2 kcal mol(-1) (295 K), respectively. Deprotonation of sulfone (R)-EtCHCHCH(Et)SO2 tBu (94 % ee) with nBuLi in THF at -105 °C occurred with a calculated enantioselectivity of 93 % ee and gave carbanion (M)-[EtCHCHC(Et)SO2 tBu]Li, the deuteration and alkylation of which with CF3 CO2 D and MeOCH2 I, respectively, proceeded with high enantioselectivities. Time-dependent deuteration of the enantioenriched carbanion (M)-[EtCHCHC(Et)SO2 tBu]Li in THF gave a racemization barrier of ΔG(≠) =12.5 kcal mol(-1) (168 K), which translates to a calculated half-time of racemization of t1/2 =12 min at -105 °C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201503123 | DOI Listing |
Org Lett
January 2025
Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
A new sequential deprotonation strategy of dimethyl sulfoxide (DMSO) and propargyl alcohol in the presence of a base was developed for the generation of the α-hydroxyl carbanion, which enables rapid and controllable access to a wide range of valuable highly functionalized furans in one pot from alkynes and aldehydes under transition-metal- and additive-free conditions. Preliminary mechanistic studies revealed the crucial role of the base and DMSO. More importantly, deuterium labeling experiments confirmed the formation of the α-hydroxyl carbanion.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria.
We report on the temperature-dependent reactions of the carbon-chain anions C and C, as well as the hydrocarbons CH and CH with H atoms in the temperature regime between 8 and 296 K. The experiments have been carried out in a temperature-variable radiofrequency multipole ion trap. From the measured kinetics, we have derived reaction rate coefficients that are constant for all considered systems in the measured temperature regime.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada.
Hydrosilanes and Lewis bases are known to promote various reductive defunctionalizations, rearrangements, and silylation reactions, facilitated by enigmatic silicon/Lewis base-derived reactive intermediates. Despite the wide variety of transformations enabled by this reagent combination, no examples of intermolecular C(sp)-C(sp) forming reactions have been reported. In this work, we've identified 1,1,3,3-tetramethyldisiloxane (TMDSO) and KOBu as a unique reagent combination capable of generating benzylic nucleophiles in situ from styrene derivatives, which can subsequently react with alkyl halides to give a new C(sp)-C(sp) linkage via formal hydroalkylation.
View Article and Find Full Text PDFOrg Lett
December 2024
State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
The direct carboxylation of C(sp)-H bonds with CO represents a challenging but highly attractive strategy in organic synthesis. In this study, we presented a visible-light-catalyzed strategy for carboxylating remote C(sp)-H bonds with CO via aryl radical induced 1,5-hydrogen atom transfer. This transformation involves generating alkyl radicals via 1,5-hydrogen atom transfer from aryl radicals, forming alkyl carbanions as key intermediates, and a subsequent nucleophilic attack with CO, thereby enabling access to a variety of tertiary and quaternary carboxylic acids in moderate to good yields.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
Herein, we introduce a new platform for alkene carboxy-alkylation. This reaction is designed around CO addition to alkenes followed by radical polar crossover, which enables alkylation through carbanion attack on carbonyl electrophiles. We discovered that CO adds to alkenes faster than it reduces carbonyl electrophiles and that this reactivity can be exploited by accessing CO via hydrogen atom transfer from formate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!