Background: To survive in a changing environment plants constantly monitor their surroundings. In response to several stresses and during photorespiration plants use reactive oxygen species as signaling molecules. The Arabidopsis thaliana catalase2 (cat2) mutant lacks a peroxisomal catalase and under photorespiratory conditions accumulates H2O2, which leads to activation of cell death.
Methods: A cat2 double mutant collection was generated through crossing and scored for cell death in different assays. Selected double mutants were further analyzed for photosynthetic performance and H2O2 accumulation.
Results: We used a targeted mutant analysis with more than 50 cat2 double mutants to investigate the role of stress hormones and other defense regulators in H2O2-mediated cell death. Several transcription factors (AS1, MYB30, MYC2, WRKY70), cell death regulators (RCD1, DND1) and hormone regulators (AXR1, ERA1, SID2, EDS1, SGT1b) were essential for execution of cell death in cat2. Genetic loci required for cell death in cat2 was compared with regulators of cell death in spontaneous lesion mimic mutants and led to the identification of a core set of plant cell death regulators. Analysis of gene expression data from cat2 and plants undergoing cell death revealed similar gene expression profiles, further supporting the existence of a common program for regulation of plant cell death.
Conclusions: Our results provide a genetic framework for further study on the role of H2O2 in regulation of cell death. The hormones salicylic acid, jasmonic acid and auxin, as well as their interaction, are crucial determinants of cell death regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619244 | PMC |
http://dx.doi.org/10.1186/s12864-015-1964-8 | DOI Listing |
Curr Oncol Rep
January 2025
Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 111 East 210Th Street, Bronx, NY, 10461, USA.
Purpose Of Review: This paper reviewed the current literature on incidence, clinical manifestations, and risk factors of Chimeric Antigen Receptor T-cell (CAR-T) cardiotoxicity.
Recent Findings: CAR-T therapy has emerged as a groundbreaking treatment for hematological malignancies since FDA approval in 2017. CAR-T therapy is however associated with a few side effects, among which cardiotoxicity is of significant concern.
Discov Oncol
January 2025
Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-46, Tamil Nadu, India.
Background: Electromagnetic radiation (EMR) from wireless technology and mobile phones, operates at various frequencies. The present study analyses the major impact of short-term exposure to 2.4 GHz frequency EMR, using the two model systems chick embryos and SH-SY5Y cell lines.
View Article and Find Full Text PDFSleep Breath
January 2025
Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.
View Article and Find Full Text PDFMol Genet Genomics
January 2025
Department of Emergency, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
Acute kidney injury (AKI) is one of the most serious and common complications in the course of sepsis, known for its poor prognosis and high mortality rate. Recently, ferroptosis, as a newly discovered regulatory cell death, might be closely associated with the progression of AKI. METTL14 is a writer of RNA m6A, an abundant epigenetic modification in transcriptome with broad function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!