Unlabelled: Weak and ineffective antitumor cytotoxic T lymphocyte (CTL) responses can be rescued by immunomodulatory mAbs targeting PD-1 or CD137. Using Batf3(-/-) mice, which are defective for cross-presentation of cell-associated antigens, we show that BATF3-dependent dendritic cells (DC) are essential for the response to therapy with anti-CD137 or anti-PD-1 mAbs. Batf3(-/-) mice failed to prime an endogenous CTL-mediated immune response toward tumor-associated antigens, including neoantigens. As a result, the immunomodulatory mAbs could not amplify any therapeutically functional immune response in these mice. Moreover, administration of systemic sFLT3L and local poly-ICLC enhanced DC-mediated cross-priming and synergized with anti-CD137- and anti-PD-1-mediated immunostimulation in tumor therapy against B16-ovalbumin-derived melanomas, whereas this function was lost in Batf3(-/-) mice. These experiments show that cross-priming of tumor antigens by FLT3L- and BATF3-dependent DCs is crucial to the efficacy of immunostimulatory mAbs and represents a very attractive point of intervention to enhance their clinical antitumor effects.

Significance: Immunotherapy with immunostimulatory mAbs is currently achieving durable clinical responses in different types of cancer. We show that cross-priming of tumor antigens by BATF3-dependent DCs is a key limiting factor that can be exploited to enhance the antitumor efficacy of anti-PD-1 and anti-CD137 immunostimulatory mAbs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036540PMC
http://dx.doi.org/10.1158/2159-8290.CD-15-0510DOI Listing

Publication Analysis

Top Keywords

batf3-/- mice
12
immunostimulatory mabs
12
anti-cd137 anti-pd-1
8
batf3-dependent dendritic
8
dendritic cells
8
immunomodulatory mabs
8
antigens batf3-dependent
8
immune response
8
cross-priming tumor
8
tumor antigens
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!