Background: The entire collection of genetic information resides within the chromosomes, which themselves reside within almost every cell nucleus of eukaryotic organisms. Each individual chromosome is found to have its own preferred three-dimensional (3D) structure independent of the other chromosomes. The structure of each chromosome plays vital roles in controlling certain genome operations, including gene interaction and gene regulation. As a result, knowing the structure of chromosomes assists in the understanding of how the genome functions. Fortunately, the 3D structure of chromosomes proves possible to construct through computational methods via contact data recorded from the chromosome. We developed a unique computational approach based on optimization procedures known as adaptation, simulated annealing, and genetic algorithm to construct 3D models of human chromosomes, using chromosomal contact data.
Results: Our models were evaluated using a percentage-based scoring function. Analysis of the scores of the final 3D models demonstrated their effective construction from our computational approach. Specifically, the models resulting from our approach yielded an average score of 80.41%, with a high of 91%, across models for all chromosomes of a normal human B-cell. Comparisons made with other methods affirmed the effectiveness of our strategy. Particularly, juxtaposition with models generated through the publicly available method Markov chain Monte Carlo 5C (MCMC5C) illustrated the outperformance of our approach, as seen through a higher average score for all chromosomes. Our methodology was further validated using two consistency checking techniques known as convergence testing and robustness checking, which both proved successful.
Conclusions: The pursuit of constructing accurate 3D chromosomal structures is fueled by the benefits revealed by the findings as well as any possible future areas of study that arise. This motivation has led to the development of our computational methodology. The implementation of our approach proved effective in constructing 3D chromosome models and proved consistent with, and more effective than, some other methods thereby achieving our goal of creating a tool to help advance certain research efforts. The source code, test data, test results, and documentation of our method, Gen3D, are available at our sourceforge site at: http://sourceforge.net/projects/gen3d/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619219 | PMC |
http://dx.doi.org/10.1186/s12859-015-0772-0 | DOI Listing |
JMIR Mhealth Uhealth
January 2025
Department of Learning and Workforce Development, The Netherlands Organisation for Applied Scientific Research, Soesterberg, Netherlands.
Background: Wearable sensor technologies, often referred to as "wearables," have seen a rapid rise in consumer interest in recent years. Initially often seen as "activity trackers," wearables have gradually expanded to also estimate sleep, stress, and physiological recovery. In occupational settings, there is a growing interest in applying this technology to promote health and well-being, especially in professions with highly demanding working conditions such as first responders.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
INSERM U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 30 Bd Jean Monnet, Nantes, 44093, France, 33 2 40 08 74 10.
Precision medicine involves a paradigm shift toward personalized data-driven clinical decisions. The concept of a medical "digital twin" has recently become popular to designate digital representations of patients as a support for a wide range of data science applications. However, the concept is ambiguous when it comes to practical implementations.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Background: Many tools have been developed to predict the risk of diabetes in a population without diabetes; however, these tools have shortcomings that include the omission of race, inclusion of variables that are not readily available to patients, and low sensitivity or specificity.
Objective: We aimed to develop and validate an easy, systematic index for predicting diabetes risk in the Asian population.
Methods: We collected the data from the NAGALA (NAfld [nonalcoholic fatty liver disease] in the Gifu Area, Longitudinal Analysis) database.
J Sports Sci
January 2025
Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Sogndal, Norway.
Multivariate pattern analysis was recently extended with covariate projections to solve the challenging task of modelling and interpreting associations in the presence of linear dependent multivariate covariates. Within a joint model, this approach allows quantification of the net association pattern between the outcome and the explanatory variables and between the individual covariates and these variables. The aim of this paper is to apply this methodology to establish the net multivariate association pattern between cardiorespiratory fitness (CRF) and a high-resolution linear dependent physical activity (PA) intensity descriptor derived from accelerometry in children and to validate the crucial sub-regions in the PA spectrum predicting CRF.
View Article and Find Full Text PDFConfl Health
January 2025
London School of Hygiene and Tropical Medicine, Department of Non-Communicable Diseases Epidemiology, Keppel street, London, WC1E 7HT, UK.
Background: Non-communicable diseases (NCDs) are the leading cause of death globally, and many humanitarian crises occur in countries with high NCD burdens. Peer support is a promising approach to improve NCD care in these settings. However, evidence on peer support for people living with NCDs in humanitarian settings is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!