Myosins (MYO) define a superfamily of motor proteins which facilitate movement along cytoskeletal actin filaments in an ATP-dependent manner. To date, over 30 classes of myosin have been defined that vary in their roles and distribution across different taxa. The multidomain tail of myosin is responsible for the observed functional differences in different myosin classes facilitating differential binding to different cargos. One domain found in this region, the FERM domain, is found in several diverse proteins and is involved in many biological functions ranging from cell adhesion and actin-driven cytoskeleton assembly to cell signaling. Recently, new classes of unconventional myosin have been identified in Tetrahymena thermophila. In this study, we have identified, modeled, and characterized eight FERM domains from the unconventional T. thermophila myosins as their complete functional MyTH4-FERM cassettes. Our results reveal notable sequence, structural, and electrostatic differences between T. thermophila and other characterized FERM domains. Specifically, T. thermophila FERM domains contain helical inserts or extensions, which contribute to significant differences in surface electrostatic profiles of T. thermophila myosin FERMs when compared to the conventional FERM domains. Analyses of the modeled domains reveal differences in key functional residues as well as phosphoinositide-binding signatures and affinities. The work presented here broadens the scope of our understanding of myosin classes and their inherent functions, and provides a platform for experimentalists to design rational experimental studies to test the functional roles for T. thermophila myosins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cm.21261 | DOI Listing |
J Virol
December 2024
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
Viral nervous necrosis caused by the nervous necrosis virus (NNV) poses a significant threat to the global aquaculture industry. Developing preventive methods to minimize economic losses due to NNV infections is crucial. This study explored the role of the sorting nexin 27 () gene, encoded by the orange-spotted grouper () and referred to as , as an immune regulator affecting red-spotted grouper nervous necrosis virus (RGNNV) infection .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2024
The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD 4072, Australia.
Endosomal membrane trafficking is mediated by specific protein coats and formation of actin-rich membrane domains. The Retromer complex coordinates with sorting nexin (SNX) cargo adaptors including SNX27, and the SNX27-Retromer assembly interacts with the Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex which nucleates actin filaments establishing the endosomal recycling domain. Crystal structures, modeling, biochemical, and cellular validation reveal how the FAM21 subunit of WASH interacts with both Retromer and SNX27.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
Department of Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden.
The Ezrin/Radixin/Moesin (ERM) family of proteins act as cross-linkers between the plasma membrane and the actin cytoskeleton. This mechanism plays an essential role in processes related to membrane remodeling and organization, such as cell polarization, morphogenesis and adhesion, as well as in membrane protein trafficking and signaling pathways. For several human aquaporin (AQP) isoforms, an interaction between the ezrin band our-point-one, zrin, adixin, oesin (FERM)-domain and the AQP C-terminus has been demonstrated, and this is believed to be important for AQP localization in the plasma membrane.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
July 2024
Critical Disease Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
Protein tyrosine phosphatase non-receptor type 21 (PTPN21) is a cytosolic protein tyrosine phosphatase that regulates cell growth and invasion. Due to its oncogenic properties, PTPN21 has recently emerged as a potential therapeutic target for cancer. In this study, the three-dimensional structure of the PTPN21 FERM domain was determined at 2.
View Article and Find Full Text PDFImmunity
August 2024
Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Frontiers Research Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China; National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China. Electronic address:
Prolonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-β-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!