A new efficient synthetic route to unsymmetrically substituted dihydropyridine scaffolds via dehydrative [4 + 2] cycloaddition of N-tosylated α,β-unsaturated imines with aldehydes has been developed. This transformation is enabled by (i) the remarkable catalytic ability of the cationic Ru(IV) porphyrin complex to activate both the imino and carbonyl groups and (ii) the hydrophobic nature of the porphyrin ligand, which helps realize robust Lewis acidity in the dehydrative cycloaddition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.5b02654 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Strasbourg, UMR 7213 CNRS, 74, Route du Rhin, 67401, Illkirch-Strasbourg, FRANCE.
Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst.
View Article and Find Full Text PDFSilylformates are emerging surrogates of hydrosilanes, able to reduce carbonyl groups in transfer hydrosilylation reactions, with the concomitant release of CO2. In this work, a new reactivity is revealed for silylformates, in the presence of imines. Using ruthenium catalysts, and lithium iodide as a co-catalyst, imines are shown to undergo hydrocarboxysilylation by formal insertion of CO2 to the N-Si bond of silyl amine to yield silyl carbamates in excellent yields.
View Article and Find Full Text PDFChem Sci
January 2025
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT) Guangzhou 510640 China.
Radical-mediated dearomatization strategies offer a blueprint for building value-added and synthetically valuable three-dimensional skeletons from readily available aromatic starting materials. Herein, we report a novel strategy by leveraging benzene-linked O-oxime esters as triply functionalized precursors to form two distinct persistent radicals under a chemodivergent pathway. These radicals then couple with a cyclohexadienyl radical for either carboamination or carbo-aminoalkylation.
View Article and Find Full Text PDFGreen Chem
January 2025
Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
The development of sustainable synthetic methods for converting alcohols to amines is of great interest due to their widespread use in pharmaceuticals and fine chemicals. In this work, we present an electrochemical approach by using green electrons for the selective oxidation of benzyl alcohol to benzaldehyde using a NiOOH catalyst, followed by its reductive amination to form benzyl--butylamine. The number of Ni monolayer equivalents on the catalyst was found to significantly influence selectivity, with 2 monolayers achieving up to 90% faradaic efficiency (FE) for benzaldehyde in NaOH, while 10 monolayers performed best in a -butylamine solution (pH 11), yielding 100% FE for benzaldehyde.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhejiang University, Chemistry, Department of Chemistry, ZhiJinGang Campus, 310058, Hangzhou, CHINA.
Integrating two or more materials to construct membranes with heterogeneous pore structures is an effective strategy for enhancing separation performance. Regularly arranging these heterogeneous pores can significantly optimize the combined effect of the introduced components. Porous Organic Cages (POCs), an emerging subclass of porous materials composed of discrete molecules, assemble to form interconnected pores and exhibit permanent porosity in the solid state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!