Implantation of embryonic stem cells (ESCs) and their differentiated derivatives into allogeneic hosts triggers an immune response that represents a hurdle to clinical application. We established in autoimmunity and in transplantation that CD3 antibody therapy induces a state of immune tolerance. Promising results have been obtained with CD3 antibodies in the clinic. In this study, we tested whether this strategy can prolong the survival of undifferentiated ESCs and their differentiated derivatives in histoincompatible hosts. Recipients of either mouse ESC-derived embryoid bodies (EBs) or cardiac progenitors received a single short tolerogenic regimen of CD3 antibody. In immunocompetent mice, allogeneic EBs and cardiac progenitors were rejected within 20-25 days. Recipients treated with CD3 antibody showed long-term survival of implanted cardiac progenitors or EBs. In due course, EBs became teratomas, the growth of which was self-limited. Regulatory CD4(+)FoxP3(+) T cells and signaling through the PD1/PDL1 pathway played key roles in the CD3 antibody therapeutic effect. Gene profiling emphasized the importance of TGF-β and the inhibitory T cell coreceptor Tim3 to the observed effect. These results demonstrate that CD3 antibody administered alone promotes prolonged survival of allogeneic ESC derivatives and thus could prove useful for enhancing cell engraftment in the absence of chronic immunosuppression.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ajt.13477DOI Listing

Publication Analysis

Top Keywords

cd3 antibody
20
cardiac progenitors
12
immune response
8
embryonic stem
8
stem cells
8
escs differentiated
8
differentiated derivatives
8
ebs cardiac
8
cd3
7
antibody
5

Similar Publications

Mepolizumab in patients with lymphoid variant hypereosinophilic syndrome: a multi-center prospective study.

J Allergy Clin Immunol

January 2025

Department of Internal Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium.

Background: Hypereosinophilic syndrome (HES) is characterized by blood and tissue hypereosinophilia causing organ damage and/or dysfunction. Mepolizumab, an anti-IL-5 antibody, has recently been approved in this indication. In lymphoid variant (L-)HES, eosinophil expansion is driven by IL-5-producing clonal CD3CD4 T cells.

View Article and Find Full Text PDF

To summarise the clinical characteristics, radiological features, treatments and prognosis of patients with myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) overlapped with NMDA receptor (NMDAR) encephalitis. We retrospectively analysed patients who exhibited dual positivity for MOG antibodies and NMDAR antibodies in serum/CSF from Jan 2018 to Jun 2023. Ten patients with MOGAD and NMDAR encephalitis were enrolled.

View Article and Find Full Text PDF

Talquetamab plus Teclistamab in Relapsed or Refractory Multiple Myeloma.

N Engl J Med

January 2025

From Tel Aviv Sourasky Medical Center (Y.C.C., I.A.), and the Faculty of Medical and Health Sciences, Tel Aviv University (Y.C.C., H.M., I.A.), Tel Aviv, Chaim Sheba Medical Center, Ramat Gan (H.M.), and Hadassah Hebrew University Medical Center, Jerusalem (M.G.) - all in Israel; McGill University and McGill University Health Centre, Montreal (M.S.), and Alberta Health Services, Edmonton (M.P.C.) - all in Canada; Samsung Medical Center, Sungkyunkwan University School of Medicine (K.K.), Seoul St. Mary's Hospital, Catholic University of Korea (C.-K.M.), and Seoul National University College of Medicine (S.-S.Y.) - all in Seoul, South Korea; Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla, Universidad de Cantabria, Santander (E.M.O.), Cancer Center Clínica Universidad de Navarra, Center for Applied Medical Research, Pamplona (P.R.-O.), Institut Català d'Oncologia, Josep Carreras Leukemia Research Institute, and the Hospital Germans Trias i Pujol, Barcelona (A.O.), START Madrid-Fundación Jiménez Díaz Early Phase Unit, University Hospital Fundación Jiménez Díaz, Madrid (D.M.), and the University Hospital of Salamanca, Institute for Biomedical Research of Salamanca, the Salamanca Cancer Research Center, and Centro de Investígación Biomédica en Red Cáncer, Salamanca (M.-V.M.) - all in Spain; Janssen Research and Development, Spring House, PA (N.A.Q.C., A.K., M.K., M.R.P., E.S., B.H., J.V., A.B.); and Janssen Research and Development, Allschwil, Switzerland (L.D.S.).

Background: Talquetamab (anti-G protein-coupled receptor family C group 5 member D) and teclistamab (anti-B-cell maturation antigen) are bispecific antibodies that activate T cells by targeting CD3 and that have been approved for the treatment of triple-class-exposed relapsed or refractory multiple myeloma.

Methods: We conducted a phase 1b-2 study of talquetamab plus teclistamab in patients with relapsed or refractory multiple myeloma. In phase 1, we investigated five dose levels in a dose-escalation study.

View Article and Find Full Text PDF

CD28 shapes T cell receptor signaling by regulating Lck dynamics and ZAP70 activation.

Front Immunol

January 2025

Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.

Introduction: T cell activation requires T cell receptor (TCR) engagement by its specific ligand. This interaction initiates a series of proximal events including tyrosine phosphorylation of the CD3 and TCRζ chains, recruitment, and activation of the protein tyrosine kinases Lck and ZAP70, followed by recruitment of adapter and signaling proteins. CD28 co-stimulation is also required to generate a functional immune response.

View Article and Find Full Text PDF

FcγR1-Expressing Cell Membrane-Coated Nanoparticle (FcγR1-CMNP) for T-Cell-Engaging Bispecific Nanoantibody Construction.

ACS Appl Mater Interfaces

January 2025

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.

T-cell-engaging bispecific antibodies (BiTEs), which can simultaneously bind to antigens on tumor cells and T cells, show good potential in cancer immunotherapy. A practical and feasible approach for emulating BiTEs involves immobilizing two types of monoclonal antibodies (mAbs) onto a single nanoparticle; however, this approach involves complex immobilization processes and chemical reactions. To overcome these challenges, we achieved gentle antibody immobilization through receptor-ligand interactions by constructing a mAb delivery system known as Fcγ receptor 1 (FcγR1)-expressing cell membrane-coated nanoparticles (abbreviated as FcγR1-CMNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!